In this paper we focus on estimating the joint relationship between structural MRI (sMRI) gray matter (GM) and multiple functional MRI (fMRI) intrinsic connectivity networks (ICN) using a novel approach called multi-link joint independent component analysis (ml-jICA). The proposed model offers several improvements over the existing joint independent component analysis (jICA) model. We assume a shared mixing matrix for both the sMRI and fMRI modalities, while allowing for different mixing matrices linking the sMRI data to the different ICNs. We introduce the model and then apply this approach to study the differences in resting fMRI and sMRI data from patients with Alzheimer's disease (AD) versus controls. The results yield significant differences with large effect sizes that include regions in overlapping portions of default mode network, and also hippocampus and thalamus. Importantly, we identify two joint components with partially overlapping regions which show opposite effects for Alzheimer's disease versus controls, but were able to be separated due to being linked to distinct functional and structural patterns. This highlights the unique strength of our approach and multimodal fusion approaches generally in revealing potentially biomarkers of brain disorders that would likely be missed by a unimodal approach. These results represent the first work linking multiple fMRI ICNs to gray matter components within a multimodal data fusion model and challenges the typical view that brain structure is more sensitive to AD than fMRI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002680 | PMC |
http://dx.doi.org/10.1101/2023.02.28.530458 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!