Efficiency of breeding olives for resistance to Verticillium wilt.

Front Plant Sci

Department of Agronomy (Excellence Unit 'María de Maeztu' 2020-23), ETSIAM, University of Cordoba, Cordoba, Spain.

Published: February 2023

Olive trees are the most cultivated evergreen trees in the Mediterranean Basin, where they have deep historical and socioeconomic roots. The fungus develops inside the vascular bundles of the host, and there are no effective applicable treatments, making it difficult to control the disease. In this sense, the use of integrated disease management, specifically the use of resistant cultivars, is the most effective means to alleviate the serious damage that these diseases are causing and reduce the expansion of this pathogen. In 2008, the University of Cordoba started a project under the UCO Olive Breeding Program whose main objective has been to develop new olive cultivars with high resistance to Verticillium wilt. Since 2008, more than 18,000 genotypes from 154 progenies have been evaluated. Only 19.9% have shown some resistance to the disease in controlled conditions and only 28 have been preselected due to their resistance in field condition and remarkable agronomic characteristics. The results of this study represent an important advancement in the generation of resistant olive genotypes that will become commercial cultivars currently demanded by the olive growing sector. Our breeding program has proven successful, allowing the selection of several new genotypes with high resistance to the disease and agronomical performance. It also highlights the need for long-term field evaluations for the evaluation of resistance and characterization of olive genotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9994353PMC
http://dx.doi.org/10.3389/fpls.2023.1149570DOI Listing

Publication Analysis

Top Keywords

resistance verticillium
8
verticillium wilt
8
breeding program
8
high resistance
8
resistance disease
8
olive genotypes
8
resistance
6
olive
6
efficiency breeding
4
breeding olives
4

Similar Publications

wilt (VW) caused by (Vd) is a devastating fungal cotton disease characterized by high pathogenicity, widespread distribution, and frequent variation. It leads to significant losses in both the yield and quality of cotton. Identifying key non-synonymous single nucleotide polymorphism (SNP) markers and crucial genes associated with VW resistance in and , and subsequently breeding new disease-resistant varieties, are essential for VW management.

View Article and Find Full Text PDF

is a soil-borne phytopathogenic fungus causing destructive Verticillium wilt disease that greatly threats cotton production worldwide. The mechanism of cotton resistance to Verticillium wilt is very complex and requires further research. In this study, RNA-sequencing was used to investigate the defense responses of cotton leaves using varieties resistant (Zhongzhimian 2, or Z2) or susceptible (Xinluzao 7, or X7) to .

View Article and Find Full Text PDF

, previously classified in the genus until 2007, is an attenuated pathogen known to provide cross-protection against wilt in various crops. To investigate the potential mechanisms underlying its reduced virulence, we conducted genome sequencing, annotation, and a comparative genome analysis of GnVn.1 (GnVn.

View Article and Find Full Text PDF

GhCNGC31 is critical for conferring resistance to Verticillium wilt in cotton.

Plant Mol Biol

December 2024

State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China.

In the past decades, cyclic nucleotide-gated ion channels (CNGCs) have been extensively studied in diploid species Arabidopsis thaliana. However, the functional diversification of CNGCs in crop plants, mostly polyploid, remains poorly understood. In allotetraploid Upland cotton (Gossypium hirsutum), GhCNGC31 is one of the multiple orthologs of AtCNGC2, being present in the plasma membrane, capable of interacting with itself and binding to calmodulins and cyclic nucleotides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!