Recent evidence has shown a crucial role for the osteoprotegerin/receptor activator of nuclear factor κ-B ligand/RANK (OPG/RANKL/RANK) signaling axis not only in bone but also in muscle tissue; however, there is still a lack of understanding of its effects on muscle atrophy. Here, we found that denervated knockout mice displayed better functional recovery and delayed muscle atrophy, especially in a specific type IIB fiber. Moreover, OPG deficiency promoted milder activation of the ubiquitin-proteasome pathway, which further verified the protective role of knockout in denervated muscle damage. Furthermore, transcriptome sequencing indicated that knockout upregulated the expression of , , and and downregulated that of in denervated muscle. experiments revealed that satellite cells derived from knockout mice displayed a better differentiation ability than those acquired from wild-type littermates. Higher expression levels of were also observed in satellite cells derived from knockout mice, which provided a possible mechanistic basis for the protective effects of knockout on muscle atrophy. Taken together, our findings uncover the novel role of in muscle atrophy process and extend the current understanding in the OPG/RANKL/RANK signaling axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992212PMC
http://dx.doi.org/10.3389/fphys.2023.1127474DOI Listing

Publication Analysis

Top Keywords

muscle atrophy
20
knockout mice
16
muscle
8
opg/rankl/rank signaling
8
signaling axis
8
mice displayed
8
displayed better
8
denervated muscle
8
satellite cells
8
cells derived
8

Similar Publications

There are limited studies on the phase angle (PhA) and sarcopenic obesity (SO) in the Chinese population. This study aimed to establish 50 kHz-PhA reference data for SO population, and to evaluate the correlation between 50 kHz-PhA and SO. A total of 10,312 participants including 5415 men and 4897 women were enrolled in this study, and their resistance and reactance at 50 kHz, and body composition parameters were measured a segmental multifrequency bioelectrical impedance analysis device (InBody 720).

View Article and Find Full Text PDF

Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.

View Article and Find Full Text PDF

Dihydroartemisinin ameliorates skeletal muscle atrophy in the lung cancer cachexia mouse model.

J Cancer Res Ther

December 2024

Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China.

Introduction: Cancer cachexia (CC) is characterized by weight loss with specifically reduced skeletal muscles and adipose tissues in patients with late-stage cancer. Dihydroartemisinin (DHA), an effective antimalarial derivative of artemisinin, has been demonstrated to have anti-inflammatory and antitumor properties.

Materials And Methods: This study examined the effects of DHA on the Lewis lung carcinoma (LLC)-induced CC mouse model.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes.

View Article and Find Full Text PDF

Edaravone Improves Motor Dysfunction Following Brachial Plexus Avulsion Injury in Rats.

ACS Chem Neurosci

January 2025

Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.

Brachial plexus root avulsion (BPRA) is often caused by road collisions, leading to total loss of motor function in the upper limb. At present, effective treatment options remain limited. Edaravone (EDA), a substance that eliminates free radicals, exhibits numerous biological properties, including neuroprotective, antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!