Objective: To examine interactions between Neuropsychiatric symptoms (NPS) with Pittsburgh Compound B (PiB) and fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting cognitive trajectories.
Methods: We conducted a longitudinal study in the setting of the population-based Mayo Clinic Study of Aging in Olmsted County, MN, involving 1581 cognitively unimpaired (CU) persons aged ≥50 years (median age 71.83 years, 54.0% males, 27.5% APOE ɛ4 carriers). NPS at baseline were assessed using the Neuropsychiatric Inventory Questionnaire (NPI-Q). Brain glucose hypometabolism was defined as a SUVR ≤ 1.47 (measured by FDG-PET) in regions typically affected in Alzheimer's disease. Abnormal cortical amyloid deposition was measured using PiB-PET (SUVR ≥ 1.48). Neuropsychological testing was done approximately every 15 months, and we calculated global and domain-specific (memory, language, attention, and visuospatial skills) cognitive z-scores. We ran linear mixed-effect models to examine the associations and interactions between NPS at baseline and z-scored PiB- and FDG-PET SUVRs in predicting cognitive z-scores adjusted for age, sex, education, and previous cognitive testing.
Results: Individuals at the average PiB and without NPS at baseline declined over time on cognitive z-scores. Those with increased PiB at baseline declined faster (two-way interaction), and those with increased PiB and NPS declined even faster (three-way interaction). We observed interactions between time, increased PiB and anxiety or irritability indicating accelerated decline on global z-scores, and between time, increased PiB and several NPS (e.g., agitation) showing faster domain-specific decline, especially on the attention domain.
Conclusions: NPS and increased brain amyloid deposition synergistically interact in accelerating global and domain-specific cognitive decline among CU persons at baseline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997077 | PMC |
http://dx.doi.org/10.1176/appi.prcp.20220036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!