The function of the plastoquinone pool as a possible pump for vectorial hydrogen (H+ + e-) transport across the thylakoid membrane has been investigated in isolated spinach chloroplasts. Measurements of three different optical changes reflecting the redox reactions of the plastoquinone, the external H+ uptake and the internal H+ release led to the following conclusions: (1) A stoichiometric coupling of 1 : 1 : 1 between the external H+ uptake, the electron translocation through the plastoquinone pool and the internal H+ release (corrected for H+ release due to H2O oxidation) is valid (pHout = 8, excitation with repetitive flash groups). (2) The rate of electron release from the plastoquinone pool and the rate of proton release into the inner thylakoid space due to far-red illumination are identical over a range of a more than 10-fold variation. These results support the assumption that the protons taken up by the reduced plastoquinone pool are translocated together with the electrons through the pool from the outside to the inside of the membrane. Therefore, the plastoquinone pool might act as a pump for a vectorial hydrogen (H+ + e-) transport. The molecular mechanism is discussed. The differences between this hydrogen pump of chloroplasts and the proton pump of Halobacteria are outlined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2728(79)90084-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!