Objectives: Selective caries removal aims to remove carious tissue in deep dentin lesions. However, a discussion stands on the value of antiseptics and chemomechanical adjuvant methods to reduce the bacterial load on residual caries lesions. This systematic review has addressed two main clinical questions to compare the antimicrobial efficacy of available methods using (1) antiseptic or (2) chemomechanical agents before restoring dentin carious lesions.
Methods: We included randomized and non-randomized controlled trials (RCTs/ NRCTs). We searched eight databases from inception to October 2021. Paired reviewers independently screened studies, extracted data, and assessed the risk of bias. The primary outcome was the reduction in the number of total bacterial in dentin, whereas secondary outcomes were reduction in the number of and . We used the ratio of ratio of post-treatment to baseline means between two interventions in the logarithmic scale as a proper effect measure. Certainty of evidence was assessed with the Grading of Recommendations, Assessment, Development and Evaluation approach.
Results: We included 14 RCTs and 9 NRCTs, with nine interventions. Regardless the method, the number of bacteria at baseline was similar or exceeded that after the intervention, particularly in NRCTs. The evidence was inconclusive for most comparisons. Among antiseptic agents, chlorhexidine (CHX) resulted in an average of 1.14 times [95% confidence interval (CI): 1.08-1.21] more total bacterial than photodynamic therapy in RCTs. Among NRCTS, the natural agents resulted in five times more total bacterial than CHX (95% CI: 2-11). For chemomechanical methods, the control resulted in eight times (95% CI: 4-17) more total bacterial than Carisolv (SHAA).
Conclusions: The certainty of the evidence was very low for all comparisons showing uncertainty whether one treatment could be more effective than another for dentin disinfection. So far, exclusively removing soft carious dentin would be enough to reduce the bacterial count.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992646 | PMC |
http://dx.doi.org/10.3389/froh.2023.1110634 | DOI Listing |
Environ Microbiol Rep
December 2024
Facultad de Ciencias de la Salud, Universidad Alfonso X el Sabio, Madrid, Spain.
Managing infections caused by multidrug-resistant Gram-negative bacilli is a major public health concern, particularly in hospitals where surfaces can act as reservoirs for resistant microorganisms. Identifying these bacteria in hospital environments is crucial for improving healthcare safety. This study aimed to analyse environmental samples from a veterinary hospital to identify prevalent microorganisms and detect antimicrobial resistance patterns.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
TU Dresden: Technische Universitat Dresden, Faculty of Chemistry and Food Chemistry, Bergstraße 66, 01069, Dresden, GERMANY.
Polycyclic tetramate macrolactams (PoTeMs) represent a growing class of bioactive natural products that are derived from a common tetramate polyene precursor, lysobacterene A, produced by an unusual bacterial iterative polyketide synthase (PKS) / non-ribosomal peptide synthetase (NRPS). The structural and functional diversity of PoTeMs is biosynthetically elaborated from lysobacterene A by pathway-specific cyclizing and modifying enzymes. This results in diverse core structure decoration and cyclization patterns.
View Article and Find Full Text PDFChembiochem
December 2024
The University of Adelaide, Department of Chemistry, North Terrace, 5005, Adelaide, AUSTRALIA.
The heme enzymes of the cytochrome P450 superfamily (CYPs) catalyse the selective hydroxylation of unactivated C-H bonds in organic molecules. There is great interest in applying these enzymes as biocatalysts with a focus on self-sufficient CYP 'fusion' enzymes, comprising a single polypeptide chain with the electron transfer components joined to the heme domain. Here we elucidate the function of the self-sufficient CYP116B46 fusion enzyme, from the thermophilic bacterium Tepidiphilus thermophilus.
View Article and Find Full Text PDFEvolving technology and the development of new devices that can aerosolize water present a risk for new sources of Legionella bacteria growth and spread within industrial settings. We investigated a cluster of legionellosis among employees of a manufacturing facility in South Carolina, USA, and found 2 unique equipment sources of Legionella bacteria. The cluster of cases took place during August-November 2022; a total of 34 cases of legionellosis, including 15 hospitalizations and 2 deaths, were reported.
View Article and Find Full Text PDFWe describe an outbreak of invasive meningococcal disease (IMD) caused by Neisseria meningitidis serogroup C in Fiji. We created surveillance case definitions and collected data by using standard investigation forms. Bacterial identification, antimicrobial susceptibility testing, and PCR were performed in Fiji.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!