Coronary Microvascular Dysfunction: Linking Inflammation and Cardiac Dysfunction?

JACC Basic Transl Sci

Washington University in St. Louis School of Medicine, John T. Milliken Department of Internal Medicine, Cardiovascular Division, St. Louis, Missouri, USA.

Published: February 2023

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998456PMC
http://dx.doi.org/10.1016/j.jacbts.2022.10.004DOI Listing

Publication Analysis

Top Keywords

coronary microvascular
4
microvascular dysfunction
4
dysfunction linking
4
linking inflammation
4
inflammation cardiac
4
cardiac dysfunction?
4
coronary
1
dysfunction
1
linking
1
inflammation
1

Similar Publications

Background: Women with suspected coronary microvascular dysfunction (CMD) may be at higher risk of experiencing cognitive decline due to cerebral small vessel disease, a known contributor to Alzheimer's disease and related dementias (ADRD). A potential underlying mechanism that could accelerate this cognitive decline is the accumulation of brain tissue iron, which has been previously linked to changes in brain function potentially caused by oxidative stress and cell death. Therefore, we aim to elucidate whether a similar mechanism could affect women with suspected CMD by investigating the potential role of iron deposition on the brain's functional organization and its effect on cognition using advanced magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Regulation of gene expression in eukaryotic cells is critical for cell survival, proliferation, and cell fate determination. Misregulation of gene expression can have substantial, negative consequences that result in disease or tissue dysfunction that can be targeted for therapeutic intervention. Several strategies to inhibit gene expression at the level of mRNA transcription and translation have been developed, such as anti-sense inhibition and CRISPR-Cas9 gene editing.

View Article and Find Full Text PDF

Background: Women with suspected coronary microvascular dysfunction (CMD) may be at higher risk of experiencing cognitive decline due to cerebral small vessel disease, a known contributor to Alzheimer's disease and related dementias (ADRD). A potential underlying mechanism that could accelerate this cognitive decline is the accumulation of brain tissue iron, which has been previously linked to changes in brain function potentially caused by oxidative stress and cell death. Therefore, we aim to elucidate whether a similar mechanism could affect women with suspected CMD by investigating the potential role of iron deposition on the brain's functional organization and its effect on cognition using advanced magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!