Purpose: In positron emission tomography quantification, multiple pharmacokinetic parameters are typically estimated from each time activity curve. Conventionally all but the parameter of interest are discarded before performing subsequent statistical analysis. However, we assert that these discarded parameters also contain relevant information which can be exploited to improve the precision and power of statistical analyses on the parameter of interest. Properly taking this into account can thereby draw more informative conclusions without collecting more data.

Methods: By applying a hierarchical multifactor multivariate Bayesian approach, all estimated parameters from all regions can be analysed at once. We refer to this method as Parameters undergoing Multivariate Bayesian Analysis (PuMBA). We simulated patient-control studies with different radioligands, varying sample sizes and measurement error to explore its performance, comparing the precision, statistical power, false positive rate and bias of estimated group differences relative to univariate analysis methods.

Results: We show that PuMBA improves the statistical power for all examined applications relative to univariate methods without increasing the false positive rate. PuMBA improves the precision of effect size estimation, and reduces the variation of these estimates between simulated samples. Furthermore, we show that PuMBA yields performance improvements even in the presence of substantial measurement error. Remarkably, owing to its ability to leverage information shared between pharmacokinetic parameters, PuMBA even shows greater power than conventional univariate analysis of the true binding values from which the parameters were simulated. Across all applications, PuMBA exhibited a small degree of bias in the estimated outcomes; however, this was small relative to the variation in estimated outcomes between simulated datasets.

Conclusion: PuMBA improves the precision and power of statistical analysis of PET data without requiring the collection of additional measurements. This makes it possible to study new research questions in both new and previously collected data. PuMBA therefore holds great promise for the field of PET imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008760PMC
http://dx.doi.org/10.1186/s40658-023-00537-8DOI Listing

Publication Analysis

Top Keywords

pharmacokinetic parameters
12
pumba improves
12
analysis pet
8
parameter interest
8
statistical analysis
8
precision power
8
power statistical
8
multivariate bayesian
8
pumba
8
measurement error
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!