Genotyping-driven diversity assessment of biocontrol potent Bacillus spp. strain collection as a potential method for the development of strain-specific biomarkers.

Arch Microbiol

University of Belgrade - Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia.

Published: March 2023

Bacillus species are among the most researched and frequently applied biocontrol agents. To estimate their potential as environmentally friendly microbial-based products, reliable and rapid plant colonization monitoring methods are essential. We evaluated repetitive element-based (rep) and Random Amplified Polymorphic DNA (RAPD) PCR (Polymerase Chain Reaction) genotyping in a diversity assessment of 251 strains from bulk soil, straw, and manure samples across Serbia, highlighting their discriminative force and the presence of unique bands. RAPD 272, OPG 5, and (GTG) primers were most potent in revealing the high diversity of a sizable environmental Bacillus spp. collection. RAPD 272 also amplified a unique band for a proven biocontrol strain, opening the possibility of Sequence Characterized Amplified Region (SCAR) marker design. That will enable colonization studies using the SCAR marker for its specific detection. This study provides a guide for primer selection for diversity and monitoring studies of environmental Bacillus spp. isolates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-023-03460-9DOI Listing

Publication Analysis

Top Keywords

bacillus spp
12
diversity assessment
8
rapd 272
8
environmental bacillus
8
scar marker
8
genotyping-driven diversity
4
assessment biocontrol
4
biocontrol potent
4
bacillus
4
potent bacillus
4

Similar Publications

Biofilm formation by the plant growth promoting bacterium Bacillus cereus (EB-40).

Braz J Microbiol

January 2025

Programa de Pós-Graduação em Produção Vegetal no Semiárido, Universidade Estadual de Montes Claros, Rua Reinaldo Viana, 2650, Janaúba, MG, 39400-000, Brazil.

The objective of this work was to investigate the biofilm production capacity of the isolate EB-40 (Bacillus cereus) in a culture medium for the multiplication of microorganisms and in roots of in vitro grown banana explants. It was observed that the isolate was able to produce biofilms in tryptone, soy and agar (TSA) culture medium and in the roots of explants. The format, architecture and location of the biofilms in TSA culture medium presented an exopolymer matrix formed by EB-40 presented coccoid bacillary cells and fibrillar structures.

View Article and Find Full Text PDF

Environmental antibiotic residues (EARs) and antibiotic-resistant bacteria (ARB) are known to contribute to global antimicrobial resistance (AMR). This study investigated EAR levels in selected wells, river, abattoir wastewater, bottled water and sachet water from Ede, Nigeria. Ecological risk quotient (RQ) and health risk (Hazard quotient) of the levels of these EARs, ARB and multidrug-resistant bacteria (MDR) with their antibiotic resistance were calculated.

View Article and Find Full Text PDF

Levan is a fructan-type homopolysaccharide that has gained increasing attention due to its unique properties and promising applications. It is a fructose-based polymer produced through microbial fermentation by diverse microorganisms, including bacteria, yeasts and archaea. The ongoing research on levan mainly focuses on optimizing production processes, elucidating its biological functions, and uncover novel applications.

View Article and Find Full Text PDF

A Study of the Different Strains of the Genus spp. on Increasing Productivity and Stress Resilience in Plants.

Plants (Basel)

January 2025

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.

One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.

View Article and Find Full Text PDF

Alfalfa ( L.) is an outstanding species used for the remediation of heavy metal-contaminated soil, and our previous research has shown that PGPR can promote plant growth under high-concentration lead stress. This discovery has forced scientists to search for PGPR strains compatible with alfalfa to develop an innovative bioremediation strategy for the remediation of lead-contaminated soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!