Background Aims: Few studies have reported the associations of granulocyte colony-stimulating factor (G-CSF) with cytokine release syndrome (CRS), neurotoxic events (NEs) and efficacy after chimeric antigen receptor (CAR) T-cell therapy for relapsed or refractory (R/R) multiple myeloma (MM). We present a retrospective study performed on 113 patients with R/R MM who received single anti-BCMA CAR T-cell, combined with anti-CD19 CAR T-cell or anti-CD138 CAR T-cell therapy.

Methods: Eight patients were given G-CSF after successful management of CRS, and no CRS re-occurred thereafter. Of the remaining 105 patients that were finally analyzed, 72 (68.6%) received G-CSF (G-CSF group), and 33 (31.4%) did not (non G-CSF group). We mainly analyzed the incidence and severity of CRS or NEs in two groups of patients, as well as the associations of G-CSF timing, cumulative dose and cumulative time with CRS, NEs and efficacy of CAR T-cell therapy.

Results: Both groups of patients had similar duration of grade 3-4 neutropenia, and the incidence and severity of CRS or NEs.There were also no differences in the incidence and severity of CRS or NEs between patients with the timing of G-CSF administration ≤3 days and those >3 days after CAR T-cell infusion. The incidence of CRS was greater in patients receiving cumulative doses of G-CSF >1500 μg or cumulative time of G-CSF administration >5 days. Among patients with CRS, there was no difference in the severity of CRS between patients who used G-CSF and those who did not. The duration of CRS in anti-BCMA and anti-CD19 CAR T-cell-treated patients was prolonged after G-CSF administration. There were no significant differences in the overall response rate at 1 and 3 months between the G-CSF group and the non-G-CSF group.

Conclusions: Our results showed that low-dose or short-time use of G-CSF was not associated with the incidence or severity of CRS or NEs, and G-CSF administration did not influence the antitumor activity of CAR T-cell therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcyt.2023.01.011DOI Listing

Publication Analysis

Top Keywords

car t-cell
28
severity crs
20
incidence severity
16
crs nes
16
g-csf administration
16
g-csf
14
t-cell therapy
12
crs
12
g-csf group
12
patients
10

Similar Publications

High-grade-B-cell lymphoma (HGBL) with MYC and BCL2 and/or BCL6 rearrangements (double hit [HGBL-DH] or triple hit [HGBL-TH]), or not otherwise specified (HGBL-NOS), are considered to be more aggressive diseases among large B-cell lymphomas (LBCL). CD19-targeting Chimeric Antigen Receptor (CAR) T-cells have changed the prognosis of chemoresistant LBCL. Clinical and pathological data of patients treated for relapsed/refractory LBCL or HGBL in third line or more, all characterized by FISH, were collected from the French DESCAR-T registry.

View Article and Find Full Text PDF

CD19-CAR T-cell therapy induces deep tissue depletion of B cells.

Ann Rheum Dis

January 2025

Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany, Erlangen, Germany. Electronic address:

Objectives: CD19-targeting chimeric antigen receptor (CAR) T-cell therapy can induce long-term drug-free remission in patients with autoimmune diseases (AIDs). The efficacy of CD19-CAR T-cell therapy is presumably based on deep tissue depletion of B cells; however, such effect has not been proven in humans in vivo.

Methods: Sequential ultrasound-guided inguinal lymph node biopsies were performed at baseline and after CD19-CAR T-cell therapy in patients with AIDs.

View Article and Find Full Text PDF

Introduction: Corticosteroids are used for toxicity management, raising concerns about whether they may affect the anti-leukemic effects of chimeric antigen receptor (CAR)-T cells.

Methods And Results: In this study, we retrospectively analyzed patients (fined two subgroups based on disease burden. Of the 75 cases in the low disease burden (LDB) group (MRD < 5%, no extramedullary disease), there was no significant difference between the use of steroids and event-free survival (EFS) ( = 0.

View Article and Find Full Text PDF

functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma.

Front Immunol

January 2025

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.

View Article and Find Full Text PDF

Gene therapy has long been a cornerstone in the treatment of rare diseases and genetic disorders, offering targeted solutions to conditions once considered untreatable. As the field advances, its transformative potential is now expanding into oncology, where personalized therapies address the genetic and immune-related complexities of cancer. This review highlights innovative therapeutic strategies, including gene replacement, gene silencing, oncolytic virotherapy, CAR-T cell therapy, and CRISPR-Cas9 gene editing, with a focus on their application in both hematologic malignancies and solid tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!