Identification of novel potential inhibitor of thymidylate kinase from Variola virus.

J Biomol Struct Dyn

Department of Physics, School of Physical & Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India.

Published: December 2023

AI Article Synopsis

  • A hit compound was created using Fragment Based Drug Designing (FBDD) and analyzed through density functional theory (DFT) to assess its structural and electronic properties.
  • Docking studies with protein structures VrTMPK and HssTMPK were conducted, followed by molecular dynamics (MD) simulations to evaluate the stability and interactions of the compound over 200 nanoseconds.
  • The results indicated that the compound, named POX-A, shows promise as a selective inhibitor for the Variola virus, suggesting further research opportunities for its potential use.

Article Abstract

A hit compound was designed using Fragment Based Drug Designing (FBDD) approach, density functional theory (DFT) calculations were performed to find the structural and electronic properties. Additionally, pharmacokinetic properties were studied to understand the biological response of the compound. Docking studies were carried out with the protein structure of VrTMPK and HssTMPK with the reported hit compound. The favored docked complex was further carried to perform MD simulations; the RMSD plot and H-bond analysis was done for 200 ns. Also, MM-PBSA was done to understand the binding energy constituents and stability of the complex. A comparative study of the designed hit compound was done with FDA approved Tecovirimat. As a result, it was found that the reported compound (POX-A)is a potential selective inhibitor for Variola virus. Hence, it can be used to study further and behavior of the compound.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2188426DOI Listing

Publication Analysis

Top Keywords

hit compound
12
variola virus
8
compound
5
identification novel
4
novel potential
4
potential inhibitor
4
inhibitor thymidylate
4
thymidylate kinase
4
kinase variola
4
virus hit
4

Similar Publications

Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenges emerged as real-life stress tests for computational hit-finding strategies. In CACHE Challenge #1, 23 participants contributed their original workflows to identify small-molecule ligands for the WD40 repeat (WDR) of LRRK2, a promising Parkinson's target. We applied the FRASE-based hit-finding robot (FRASE-bot), a platform for interaction-based screening allowing a drastic reduction of the explorable chemical space and a concurrent detection of putative ligand-binding sites.

View Article and Find Full Text PDF

Design, Synthesis, and biological evaluation of 7H-Pyrrolo[2,3-d]pyrimidines as potent HPK1 kinase inhibitors.

Bioorg Med Chem

January 2025

Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai 201203 China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023 China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Hematopoietic progenitor kinase 1 (HPK1) has emerged as a promising target for cancer immunotherapy due to its critical role as a negative regulator of T cell receptor (TCR) signaling. Despite this potential, no HPK1 inhibitors have been approved for cancer treatment, underscoring the need for structurally novel inhibitors. Herein, we describe the design, synthesis and biological evaluation of a series of potent HPK1 inhibitors based on our previously identified hit 9.

View Article and Find Full Text PDF

Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease.

RSC Med Chem

January 2025

Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia

In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.

View Article and Find Full Text PDF

Screening of the ChemDiv molecular library in cholesterol media against Mycobacterium tuberculosis (Mtb) H37Rv strain identified a novel isoxazole thiophene hit as a putative Rv1625c/Cya activator with a promising in vitro activity and good pharmacokinetic properties. Twenty-nine analogs were synthesized to assess the structure-activity relationships (SAR) to further improve potency. The most notable analog was P15, which showed an intramacrophage EC = 1.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!