Daunorubicin (DNR) is a chemotherapeutic drug associated with multiple side effects, including drug resistance. As the molecular mechanism related to these side effects remain unclear and mostly hypothesized, this study addresses and compares the role of DNR and its metabolite Daunorubicinol (DAUNol) to induce apoptosis and drug resistance using molecular docking, Molecular Dynamics (MD) simulation, MM-PBSA and chemical pathway analysis. The results showed that DNR's interaction was stronger with Bax protein, Mcl-1:mNoxaB and Mcl-1:Bim protein complexes than DAUNol. On the other hand, contrasting results were obtained for drug resistance proteins where stronger interaction was obtained with DAUNol compared to DNR. Further, MD simulation performed for 100 ns provided the details of protein-ligand interaction. Most notable was the interaction of Bax protein with DNR, resulting in conformational changes at α-helices 5, 6 and 9, leading to Bax activation. Finally, the chemical signalling pathway analysis also revealed the regulation of different signalling pathways by DNR and DAUNol. It was observed that DNR majorly impacted the signalling associated with apoptosis while DAUNol mainly targeted pathways related to multidrug resistance and cardiotoxicity. Overall, the results highlight that DNR biotransformation reduces its capability to induce apoptosis while enhancing its ability to induce drug resistance and off-target toxicity.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2187214DOI Listing

Publication Analysis

Top Keywords

drug resistance
20
metabolite daunorubicinol
8
resistance proteins
8
side effects
8
resistance molecular
8
induce apoptosis
8
pathway analysis
8
bax protein
8
dnr
7
drug
6

Similar Publications

Objectives: We assessed HIV-1 drug resistance profiles among people living with HIV (PLWH) with detectable viral load (VL) and on dolutegravir-based antiretroviral therapy (ART) in Botswana.

Methods: The study utilised available 100 residual HIV-1 VL samples from unique PLWH in Francistown who had viraemia at-least 6 months after initiating ART in Botswana's national ART program from November 2023 to January 2024. Viraemia was categorized as low-level viraemia (LLV) (VL: 200-999 copies/mL) or virologic failure (VF) (VL ≥1000 copies/mL).

View Article and Find Full Text PDF

Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination.

ACS Nano

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.

View Article and Find Full Text PDF

N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.

View Article and Find Full Text PDF

Background: Leprosy is a chronic infectious disease caused by () However, the emergence of drug-resistant strains of this bacterium, especially multidrug-resistant (MDR) strains, is a serious concern. This study aimed to evaluate the global prevalence of MDR and its implications.

Methods: Using PRISMA guidelines, we systematically reviewed ISI Web of Science, MEDLINE, and EMBASE up to August 2023 to assess the prevalence of MDR .

View Article and Find Full Text PDF

Abortusequi ( Abortusequi) is the primary cause of abortions in equine animals, and can cause serious foodborne illness. Thus, effective biocontrol strategies are needed to decontaminate and control the emergence of foodborne diseases. In recent years, phages have been used as a new strategy for modulating foodborne pathogens and food safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!