A healthy indigenous intestinal microbiome is indispensable for intra- and extra-intestinal human health. Since well-established factors such as diet and antibiotic use only explain 16 % of the inter-individual variation in gut microbiome composition, recent studies have focused on the association between ambient particulate air pollution and the intestinal microbiome. We systematically summarize and discuss all evidence concerning the effect of particulate air pollution on intestinal bacterial diversity indices, specific bacterial taxa, and potential underlying intestinal mechanisms. To this end, all possibly relevant publications published between February 1982 and January 2023 were screened, and eventually, 48 articles were included. The vast majority (n = 35) of these studies were animal studies. The exposure periods investigated in the human epidemiological studies (n = 12) ranged from infancy through elderly. This systematic review found that intestinal microbiome diversity indices were generally negatively associated with particulate air pollution in epidemiological studies, with an increase in taxa belonging to Bacteroidetes (two studies), Deferribacterota (one study), and Proteobacteria (four studies), a decrease in taxa belonging to Verrucomicrobiota (one study), and no consensus for taxa belonging to Actinobacteria (six studies) and Firmicutes (seven studies). There was no unequivocal effect of ambient particulate air pollution exposure on bacterial indices and taxa in animal studies. Only one study in humans examined a possible underlying mechanism; yet, the included in vitro and animal studies depicted higher gut damage, inflammation, oxidative stress, and permeability in exposed versus unexposed animals. Overall, the population-based studies showed a dose-related continuum of short- and long-term ambient particulate air pollution exposure on lower gut diversity and shifts in taxa over the entire life course.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.162769 | DOI Listing |
PLoS One
January 2025
Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).
View Article and Find Full Text PDFInt J Environ Health Res
January 2025
Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
JAMA Netw Open
January 2025
Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.
Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.
Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.
Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.
Health Phys
January 2025
Atmospheric Technologies Group, Savannah River National Laboratory, Aiken, SC.
Pollutants from anthropogenic activities including industrial processes are ubiquitous to the environment. To understand the impact from industrial aerosol on climate and human health, industrial aerosol needs to be better characterized. In this study, particle number concentrations were used as a proxy for atmospheric pollutants, which include both particles and gases.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Biomedical Engineering Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom.
This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!