Therapeutic deep eutectic solvents: A comprehensive review of their thermodynamics, microstructure and drug delivery applications.

Eur J Pharm Biopharm

Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK. Electronic address:

Published: May 2023

Deep eutectic solvents (DES) are multicomponent liquids that are usually formed by coupling a hydrogen bond donor and acceptor leading to strong non-covalent (NC) intermolecular networking and profound depression in the melting point of the system. Pharmaceutically, this phenomenon has been exploited to improve drugs' physicochemical properties, with an established DES therapeutic subcategory, therapeutic deep eutectic solvents (THEDES). THEDES preparation is usually via straightforward synthetic processes with little involvement of sophisticated techniques, which, in addition to its thermodynamic stability, make these multi-component molecular adducts a very attractive alternative for drug enabling purposes. Other NC bonded binary systems (e.g., co-crystals and ionic liquids) are utilized in the pharmaceutical field for enhancing drug's behaviours. However, a clear distinction between these systems and THEDES is scarcely discussed in the current literature. Accordingly, this review provides a structure-based categorization for DES formers, a discussion of its thermodynamic properties and phase behaviour, and it clarifies the physicochemical and microstructure boundaries between DES and other NC systems. Additionally, a summary of its preparation techniques and their experimental conditions preparation is supplied. Instrumental analysis techniques can be used to characterize and differentiate DES from other NC mixtures, hence this review draws a road map to for this purpose. Since this work mainly focuses on pharmaceutical applications of DES, all types of THEDES including the highly discussed types (conventional, drugs dissolved in DES and polymer based) in addition to the less discussed categories are covered. Finally, the regulatory status of THEDES was investigated despite the current unclear situation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2023.03.002DOI Listing

Publication Analysis

Top Keywords

deep eutectic
12
eutectic solvents
12
therapeutic deep
8
des
7
thedes
5
solvents comprehensive
4
comprehensive review
4
review thermodynamics
4
thermodynamics microstructure
4
microstructure drug
4

Similar Publications

Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

Highly efficient recovery of cobalt-ion containing waste deep eutectic electrolytes: a sustainable solvent extraction approach.

ChemSusChem

January 2025

Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, No. 68 Wenchang Road, 121 Street, 650093, Kunming, CHINA.

Efficient recovery of metals from secondary resources is essential to address resource shortages and environmental crises. The development of a cheap, environmentally friendly, and highly efficient recovery pathway is essential for resource retrieval. In this study, we propose a high-efficiency extraction approach utilizing bis(2,4,4-trimethylpentyl) phosphonic acid (Cyanex272) to recover cobalt from waste choline chloride/ethylene glycol (Ethaline) electrolyte containing Co(II) ions.

View Article and Find Full Text PDF

Deep eutectic solvent-mediated extraction of lignin: A novel strategy for producing high-quality biopolymers in controlled-release mulching applications.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China. Electronic address:

Microplastic contamination of low-density polyethylene mulch and nutrient loss from fertilizers present significant challenges in the crop-growing. In this study, the focus was on creating a biodegradable film that combines the advantages of plastic film, thermal insulation and water retention, as well as the controlled release of fertilizer. A key innovation was the efficient introduction of low molecular weight and low dispersibility of poplar lignin into chitosan and polyvinyl alcohol matrices.

View Article and Find Full Text PDF

Deep eutectic solvents in analysis, delivery and chemistry of pharmaceuticals.

Int J Pharm

January 2025

Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussels (VUB), Laarbeeklaan 103, Brussels 1090 Belgium. Electronic address:

Deep eutectic solvents (DES) have an emerging scientific role, assisting modern pharmaceutics. They are uniquely supporting the resolution of crucial issues, such as the effective extraction and isolation of bio-actives. They act as media and catalysts for pharmaceutical drug synthesis, and as green solvents and modifiers in pharmaceutical analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!