Klebsiella pneumoniae survives on surfaces as a dry biofilm.

Am J Infect Control

School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, UK.

Published: October 2023

Background: Dry surface biofilms (DSB) are widespread in healthcare settings presenting a challenge to cleaning and disinfection. Klebsiella pneumoniae has been a focus of attention due to antibiotic resistance and the emergence of hypervirulent strains. Few studies have demonstrated K pneumoniae survival on surfaces following desiccation.

Methods: DSB were formed over 12 days. Bacterial culturability and transfer were investigated following DSB incubation up to 4 weeks. Bacterial viability in DSB was investigated with live/dead staining using flow cytometry.

Results: K pneumoniae formed mature DSB. After 2 and 4 weeks of incubation, transfer from DSB was low (<55%) and reduced further (<21%) following wiping. Culturability at 2 and 4 weeks varied although viability remained high indicating viable but non culturable state (VBNC).

Discussion: K pneumoniae was removed from surfaces by mechanical wiping as shown with DSB of other species. Although culturability was reduced over time, bacteria remained viable up to 4 weeks incubation, proving the need for robust cleaning regimens.

Conclusions: This is the first study confirming K pneumoniae survival on dry surfaces as a DSB. The presence of VBNC bacteria indicated that K pneumoniae can for extended periods, raising questions about its persistence on surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajic.2023.02.009DOI Listing

Publication Analysis

Top Keywords

klebsiella pneumoniae
8
dsb
6
pneumoniae survives
4
survives surfaces
4
surfaces dry
4
dry biofilm
4
biofilm background
4
background dry
4
dry surface
4
surface biofilms
4

Similar Publications

Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals.

J Mater Chem B

January 2025

Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.

Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.

View Article and Find Full Text PDF

Ceftriaxone-resistant Enterobacterales remain a public health threat; contemporary data investigating their molecular epidemiology are limited. Five hundred consecutive ceftriaxone-resistant (MIC ≥ 4 µg/mL) Enterobacterales bloodstream isolates were collected between 2018 and 2022 from three Maryland hospitals. Broth microdilution confirmed antibiotic susceptibilities.

View Article and Find Full Text PDF

Bacteremia is a serious clinical condition in which pathogenic bacteria enter the bloodstream, putting patients at risk of septic shock and necessitating antibiotic treatment. Choosing the most effective antibiotic is crucial not only for resolving the infection but also for minimizing side effects, such as dysbiosis in the healthy microbiome and reducing the selection pressure for antibiotic resistance. This requires prompt identification of the pathogen and antibiotic susceptibility testing, yet these processes are inherently slow in standard clinical microbiology labs due to reliance on growth-based assays.

View Article and Find Full Text PDF

Unlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).

View Article and Find Full Text PDF

Keystone engineers profoundly influence microbial communities by altering their shared environment, often by modifying key resources. Here, we show that in an antibiotic-treated microbial community, bacterial spread is controlled by keystone engineering affecting dispersal- an effect hidden in well-mixed environments. Focusing on two pathogens, non-motile Klebsiella pneumoniae and motile Pseudomonas aeruginosa, we found that both tolerate a β-lactam antibiotic, with Pseudomonas being more resilient and dominating in well-mixed cultures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!