Producing food by farming and subsequent food manufacturing are central to the world's food supply, accounting for more than half of all production. Production is, however, closely related to the creation of large amounts of organic wastes or byproducts (agro-food waste or wastewater) that negatively impact the environment and the climate. Global climate change mitigation is an urgent need that necessitates sustainable development. For that purpose, proper agro-food waste and wastewater management are essential, not only for waste reduction but also for resource optimization. To achieve sustainability in food production, biotechnology is considered as key factor since its continuous development and broad implementation will potentially benefit ecosystems by turning polluting waste into biodegradable materials; this will become more feasible and common as environmentally friendly industrial processes improve. Bioelectrochemical systems are a revitalized, promising biotechnology integrating microorganisms (or enzymes) with multifaceted applications. The technology can efficiently reduce waste and wastewater while recovering energy and chemicals, taking advantage of their biological elements' specific redox processes. In this review, a consolidated description of agro-food waste and wastewater and its remediation possibilities, using different bioelectrochemical-based systems is presented and discussed together with a critical view of the current and future potential applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.121432 | DOI Listing |
Front Microbiol
January 2025
School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom.
Microbial Fuel Cells (MFCs) are innovative environmental engineering systems that harness the metabolic activities of microbial communities to convert chemical energy in waste into electrical energy. However, MFC performance optimization remains challenging due to limited understanding of microbial metabolic mechanisms, particularly with complex substrates under realistic environmental conditions. This study investigated the effects of substrate complexity (acetate vs.
View Article and Find Full Text PDFBiotechnol Appl Biochem
January 2025
Department of Civil Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India.
This study evaluates the efficacy of garbage enzyme (GE) in bioremediation to reduce pollutants in sewage drains that discharge into the natural streams and rivers. Garbage enzyme is prepared with help of brown sugar, fruit, vegetable wastes, and water in the proportion 1:3:10 (by weight), which is then applied to the samples collected from various drainage sites in Jaunpur district, Uttar Pradesh, India. Different concentrations of GE (ranging from 0% to 20%) are mixed with sewage to assess pollution reduction.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary (SGT) University, Gurugram, Haryana, 122505, India.
Accumulation of plastic waste is an alarming environmental concern across globe. For which, microbial degradation offers an efficient ecofriendly solution. Thus, the present study focuses on the exploration of new bacterium that can grow on and utilize polyethylene.
View Article and Find Full Text PDFACS Omega
January 2025
Xinjiang Key Laboratory of Novel Functional Materials Chemistry, Kashi University, Kashi, 844000, PR China.
Magnetic activated carbon (MAC) derived from agricultural waste shows significant potential for the removal of norfloxacin (NOR) from wastewater. However, understanding the removal mechanisms, efficiency, and recyclability of MAC produced from walnut green husk and ferrocene for NOR remains a challenge. In this study, walnut green husk-based MAC (HQP-MC) was synthesized, and changes in surface functionality, mechanisms for NOR removal, and major influencing factors were investigated.
View Article and Find Full Text PDFACS Omega
January 2025
Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland.
Surface-active agents are widely used in industrial processes and products for daily use. Surfactants are essential in consumer products, although they are environmentally harmful. Consequently, new technologies are being sought to address the surfactant waste problem effectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!