Characteristics and functions of DNA N(6)-methyladenine in embryonic chicken muscle development.

Poult Sci

School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Published: May 2023

DNA N(6)-methyladenine (DNA-6mA) is a new epigenetic mark in eukaryotes, the distribution and functions of which in genomic DNA remain unknown. Although recent studies have suggested that 6mA is present in multiple model organisms and is dynamically regulated during development, the genomic features of 6mA in avian species have yet to be elucidated. 6mA immunoprecipitation sequencing approach was used to analysis the distribution and function of 6mA in the muscle genomic DNA during embryonic chicken development. 6mA immunoprecipitation sequencing was combined with transcriptomic sequencing to reveal the role of 6mA in the regulation of gene expression and to explore possible pathways by which 6mA is involved in muscle development. We here provide evidence that 6mA modification exists widely throughout the chicken genome, and show preliminary data regarding genome-wide distribution of this epigenetic mark. Gene expression was shown to be inhibited by 6mA modification in promoter regions. In addition, the promoters of some genes related to development were modified by 6mA, indicating that 6mA may be involved in embryonic chicken development. Furthermore, 6mA may participate in muscle development and immune function by regulating HSPB8 and OASL expression. Our study improves our understanding of the distribution and function of 6mA modification in higher organisms and provide new information about differences between mammals and other vertebrates. These findings demonstrate an epigenetic role for 6mA in gene expression and potential involvement in chicken muscle development. Furthermore, the results suggest a potential epigenetic role for 6mA in avian embryonic development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024188PMC
http://dx.doi.org/10.1016/j.psj.2023.102528DOI Listing

Publication Analysis

Top Keywords

muscle development
16
6ma
15
embryonic chicken
12
role 6ma
12
gene expression
12
6ma modification
12
development
9
dna n6-methyladenine
8
chicken muscle
8
epigenetic mark
8

Similar Publications

Tumor Metabolism as a Factor Affecting Diversity in Cancer Cachexia.

Am J Physiol Cell Physiol

January 2025

Departments of Surgery and Oncology, University of Calgary Arnie Charbonneau Cancer Institute, University of Calgary.

Cancer cachexia is a multifaceted metabolic syndrome characterized by muscle wasting, fat redistribution, and metabolic dysregulation, commonly associated with advanced cancer but sometimes also evident in early-stage disease. More subtle body composition changes have also been reported in association with cancer, including sarcopenia, myosteatosis, and increased fat radiodensity. Emerging evidence reveals that body composition changes including sarcopenia, myosteatosis, and increased fat radiodensity, arise from distinct biological mechanisms and significantly impact survival outcomes.

View Article and Find Full Text PDF

Objective: Patellofemoral pain syndrome (PFPS) is a common knee issue, and hip joint function significantly affects knee health. Gluteus activation exercises are a promising treatment for PFPS. This study aims to investigate the impact of gluteal muscle activation exercises on the muscle involvement and movement patterns of young male patients with PFPS.

View Article and Find Full Text PDF

Approximately half of critically ill adults experience intensive care unit acquired weakness (ICUAW). Patients who develop ICUAW may have negative outcomes, including longer duration of mechanical ventilation, greater length of stay, and worse mobility, physical functioning, quality of life, and mortality. Early physical rehabilitation interventions have potential for improving ICUAW; however, randomized trials show inconsistent findings on the efficacy of these interventions.

View Article and Find Full Text PDF

NAD World 3.0: the importance of the NMN transporter and eNAMPT in mammalian aging and longevity control.

NPJ Aging

January 2025

Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, St. Louis, Missouri, USA.

Over the past five years, systemic NAD (nicotinamide adenine dinucleotide) decline has been accepted to be a key driving force of aging in the field of aging research. The original version of the NAD World concept was proposed in 2009, providing an integrated view of the NAD-centric, systemic regulatory network for mammalian aging and longevity control. The reformulated version of the concept, the NAD World 2.

View Article and Find Full Text PDF

Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!