Accurate retention time (RT) prediction is important for spectral library-based analysis in data-independent acquisition mass spectrometry-based proteomics. The deep learning approach has demonstrated superior performance over traditional machine learning methods for this purpose. The transformer architecture is a recent development in deep learning that delivers state-of-the-art performance in many fields such as natural language processing, computer vision, and biology. We assess the performance of the transformer architecture for RT prediction using datasets from five deep learning models Prosit, DeepDIA, AutoRT, DeepPhospho, and AlphaPeptDeep. The experimental results on holdout datasets and independent datasets exhibit state-of-the-art performance of the transformer architecture. The software and evaluation datasets are publicly available for future development in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.202200041 | DOI Listing |
Viruses
December 2024
Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, China.
Human respiratory syncytial virus (RSV) remains a significant global health threat, particularly for vulnerable populations. Despite extensive research, effective antiviral therapies are still limited. To address this urgent need, we present AVP-GPT2, a deep-learning model that significantly outperforms its predecessor, AVP-GPT, in designing and screening antiviral peptides.
View Article and Find Full Text PDFNutrients
January 2025
Department of Computer Engineering, Inje University, Gimhae 50834, Republic of Korea.
Background: Food image recognition, a crucial step in computational gastronomy, has diverse applications across nutritional platforms. Convolutional neural networks (CNNs) are widely used for this task due to their ability to capture hierarchical features. However, they struggle with long-range dependencies and global feature extraction, which are vital in distinguishing visually similar foods or images where the context of the whole dish is crucial, thus necessitating transformer architecture.
View Article and Find Full Text PDFSensors (Basel)
January 2025
SHCCIG Yubei Coal Industry Co., Ltd., Xi'an 710900, China.
The coal mining industry in Northern Shaanxi is robust, with a prevalent use of the local dialect, known as "Shapu", characterized by a distinct Northern Shaanxi accent. This study addresses the practical need for speech recognition in this dialect. We propose an end-to-end speech recognition model for the North Shaanxi dialect, leveraging the Conformer architecture.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Accurate and efficient measurement of deposited droplets' volume is vital to achieve zero-defect manufacturing in inkjet printed organic light-emitting diode (OLED), but it remains a challenge due to droplets' featurelessness. In our work, coherence scanning interferometry (CSI) is utilized to measure the volume. However, the CSI redundant sampling and image degradation led by the sample's transparency decrease the efficiency and accuracy.
View Article and Find Full Text PDFBiomedicines
January 2025
Perception, Robotics, and Intelligent Machines Lab (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1A 3E9, Canada.
Retinal blood vessel segmentation plays an important role in diagnosing retinal diseases such as diabetic retinopathy, glaucoma, and hypertensive retinopathy. Accurate segmentation of blood vessels in retinal images presents a challenging task due to noise, low contrast, and the complex morphology of blood vessel structures. In this study, we propose a novel ensemble learning framework combining four deep learning architectures: U-Net, ResNet50, U-Net with a ResNet50 backbone, and U-Net with a transformer block.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!