Integration of optical technologies in biomedical sciences permitted light manipulation at smaller time-length scales for specific detection and imaging of biological entities. Similarly, advances in consumer electronics and wireless telecommunications strengthened the development of affordable and portable point-of-care (POC) optical devices, circumventing the necessity of conventional clinical analyses by trained personnel. However, many of the POC optical technologies translated from bench to bedside require industrial support for their commercialization and dissemination to the population. This review aims to demonstrate the intriguing progress and challenges of emerging POC devices utilizing optics for clinical imaging (depth-resolved and perfusion imaging) and screening (infections, cancer, cardiac health, and haematologic disorders) with a focus on research studies over the previous 3 years. Special attention is given to POC optical devices that can be utilized in resource-constrained environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.202200386 | DOI Listing |
Nanoscale
January 2025
School of Chemistry and Chemical Engineering, Beijing Institution of Technology (BIT), Beijing 100081, P. R. China.
Chirality is a widespread phenomenon in the fields of nature and chemicals, endowing compounds with distinctive chemical and biological characteristics. The conventional synthesis of chiral nanomaterials relies on the introduction of chiral ligands or additives and environmental factors such as solvents and mechanical forces. Sub-nanometer nanowires (SNWs) and sub-nanometer nanobelts (SNBs) are one-dimensional nanomaterials with high anisotropy, nearly 100% atomic exposure ratio and some other distinctive characteristics.
View Article and Find Full Text PDFBiophys Rev (Melville)
March 2025
Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh.
Atrial fibrillation (AF) is recognized as a developing global epidemic responsible for a significant burden of morbidity and mortality. To counter this public health crisis, the advancement of artificial intelligence (AI)-aided tools and methodologies for the effective detection and monitoring of AF is becoming increasingly apparent. A unified strategy from the international research community is essential to develop effective intelligent tools and technologies to support the health professionals for effective surveillance and defense against AF.
View Article and Find Full Text PDFFront Chem
January 2025
School of Science, Lanzhou University of Technology, Lanzhou, China.
ACS Photonics
January 2025
Department of Physics, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, Pennsylvania 15218, United States.
We report the canonical properties of the Bose-Einstein condensation of polaritons in the weak coupling regime, seen previously in many low-temperature experiments, at room temperature in a GaAs/AlGaAs structure. These effects include a nonlinear energy shift of the polaritons, showing that they are not noninteracting photons, and dramatic line narrowing due to coherence, giving coherent emission with a spectral width of 0.24 meV at room temperature with no external stabilization.
View Article and Find Full Text PDFACS Appl Electron Mater
January 2025
Department of Applied Physics, National Pingtung University, No. 4-18, Minsheng Road, 90044 Pingtung, Taiwan.
This study introduces a simple approach to dynamically control multilevel optical ellipticity in ferrimagnetic GdFeCo alloys by switching the spin orientation through Joule heating induced by electrical current, with the assistance of a low magnetic field of 3.5 mT. It is demonstrated that selecting specific compositions of Gd (FeCo) alloys, with magnetic compensation temperatures near or above room temperature, allows for significant manipulation of the circular dichroism (CD) effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!