AI Article Synopsis

  • The MAPT gene on chromosome 17 has two variants (H1 and H2), with H1 linked to a higher risk of tauopathies and Parkinson's disease (PD).
  • The study investigated how these haplotypes affect the expression of MAPT and SNCA (α-synuclein) in postmortem brain tissues of PD patients compared to controls, using real-time qPCR and Western blotting techniques.
  • Results showed increased MAPT mRNA levels in H1 homozygotes, while H2 was linked to higher antisense MAPT-AS1 expression, but no direct connection was found between MAPT overexpression and PD status, indicating that further research is needed.

Article Abstract

The MAPT gene, encoding the microtubule-associated protein tau on chromosome 17q21.31, is result of an inversion polymorphism, leading to two allelic variants (H1 and H2). Homozygosity for the more common haplotype H1 is associated with an increased risk for several tauopathies, but also for the synucleinopathy Parkinson's disease (PD). In the present study, we aimed to clarify whether the MAPT haplotype influences expression of MAPT and SNCA, encoding the protein α-synuclein (α-syn), on mRNA and protein levels in postmortem brains of PD patients and controls. We also investigated mRNA expression of several other MAPT haplotype-encoded genes. Postmortem tissues from cortex of fusiform gyrus (ctx-fg) and of the cerebellar hemisphere (ctx-cbl) of neuropathologically confirmed PD patients (n = 95) and age- and sex-matched controls (n = 81) were MAPT haplotype genotyped to identify cases homozygous for either H1 or H2. Relative expression of genes was quantified using real-time qPCR; soluble and insoluble protein levels of tau and α-syn were determined by Western blotting. Homozygosity for H1 versus H2 was associated with increased total MAPT mRNA expression in ctx-fg regardless of disease state. Inversely, H2 homozygosity was associated with markedly increased expression of the corresponding antisense MAPT-AS1 in ctx-cbl. PD patients had higher levels of insoluble 0N3R and 1N4R tau isoforms regardless of the MAPT genotype. The increased presence of insoluble α-syn in PD patients in ctx-fg validated the selected postmortem brain tissue. Our findings in this small, but well controlled cohort of PD and controls support a putative biological relevance of tau in PD. However, we did not identify any link between the disease-predisposing H1/H1 associated overexpression of MAPT with PD status. Further studies are required to gain a deeper understanding of the potential regulatory role of MAPT-AS1 and its association to the disease-protective H2/H2 condition in the context of PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008602PMC
http://dx.doi.org/10.1186/s40478-023-01534-9DOI Listing

Publication Analysis

Top Keywords

mapt
10
total mapt
8
postmortem brain
8
brain tissue
8
associated increased
8
mapt haplotype
8
expression mapt
8
protein levels
8
mrna expression
8
expression
6

Similar Publications

Informing etiological heterogeneity of mild cognitive impairment and risk for progression to dementia with plasma p-tau217.

J Prev Alzheimers Dis

January 2025

1Florida Alzheimer's Disease Research Center, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.

Background: Mild cognitive impairment (MCI) is a clinical diagnosis representing early symptom changes with preserved functional independence. There are multiple potential etiologies of MCI. While often presumed to be related to Alzheimer's disease (AD), other neurodegenerative and non-neurodegenerative causes are common.

View Article and Find Full Text PDF

Alzheimer's disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases.

View Article and Find Full Text PDF

Patients with mild cognitive impairment due to Alzheimer's disease (ADMCI) typically show abnormally high delta (<4 Hz) and low alpha (8-12 Hz) rhythms measured from resting-state eyes-closed electroencephalographic (rsEEG) activity. Here, we hypothesized that the abnormalities in rsEEG activity may be greater in ADMCI patients than in those with MCI not due to AD (noADMCI). Furthermore, they may be associated with the diagnostic cerebrospinal fluid (CSF) amyloid-tau biomarkers in ADMCI patients.

View Article and Find Full Text PDF

L266V Gene Mutation Associated With Frontotemporal Dementia, Progressive Supranuclear Palsy, and Corticobasal Syndrome.

J Neuropsychiatry Clin Neurosci

January 2025

Departments of Psychiatry (Rivas-Grajales) and Neurology (Han, Wang), Boston University Chobanian & Avedisian School of Medicine, Boston; Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston (Greenstein, Shih).

View Article and Find Full Text PDF

Skin and Induced Pluripotent Stem Cells as Biomarkers for Neurodegenerative Diseases.

Genes (Basel)

November 2024

Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, GR-12243 Athens, Greece.

As the global population ages, the rising prevalence of neurodegenerative diseases, characterized by abnormal protein aggregates, presents significant challenges for early diagnosis and disease monitoring. Identifying accessible tissue biomarkers is crucial for advancing our ability to detect and track the progression of these diseases. Among the most promising biomarkers is the skin, which shares a common embryological origin with the brain and central nervous system (CNS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!