Microbiota-gut-adipose axis: butyrate-mediated the improvement effect on inflammatory response and fatty acid oxidation dysregulation attenuates obesity in sleep-restricted mice.

Microbes Infect

National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China. Electronic address:

Published: November 2023

Background: Insufficient sleep was considered as a substantial cause of obesity. The present study further explored the mechanism whereby sleep restriction (SR)-mediated intestinal dysbiosis induced metabolic disorder and ultimately lead to obesity in mice and the improvement effect of butyrate exerting on it.

Methods: A continuous 3 months SR mouse model with or without butyrate supplementation and fecal microbiota transplantation to explore the key role of intestinal microbiota in butyrate improving inflammatory response in inguinal white adipose tissue (iWAT) and fatty acid oxidation dysfunction in brown adipose tissue (BAT), further ameliorating SR-induced obesity.

Results: SR-mediated gut microbiota dysbiosis (down-regulation in butyrate level and up-regulation in LPS level) induced intestinal permeability increase and inflammatory response in iWAT and fatty acid oxidation dysfunction in BAT, ultimately resulting in obesity. Further, we demonstrated butyrate ameliorated gut microbiota homeostasis, suppressed inflammatory response via GPR43/LPS/TLR4/MyD88/GSK-3β/β-catenin loop in iWAT and restored fatty acid oxidation function via HDAC3/PPARα/PGC-1α/UCP1/Calpain1 pathway in BAT, ultimately reversing SR-induced obesity.

Conclusions: We revealed that gut dysbiosis is a key factor for SR-induced obesity and provided a better understanding of the effects of butyrate. We further expected that reversing SR-induced obesity by improving microbiota-gut-adipose axis disorder could be a possible treatment for metabolic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micinf.2023.105125DOI Listing

Publication Analysis

Top Keywords

inflammatory response
16
fatty acid
16
acid oxidation
16
microbiota-gut-adipose axis
8
adipose tissue
8
iwat fatty
8
oxidation dysfunction
8
gut microbiota
8
bat ultimately
8
reversing sr-induced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!