Type 2 diabetes mellitus (T2DM) and obesity have been considered epidemics and threats to public health worldwide. Exendin-4 (Ex), a GLP-1R agonist, has potential for treating T2DM and obesity. However, Ex has a half-life of only 2.4 h in humans and needs to be administered twice daily, which hampers its clinical application. In this study, we synthesized four new GLP-1R agonists by genetically fusing Ex to the N-terminus of HSA-binding ankyrin repeat proteins (DARPins) via linkers of different lengths, denoted as Ex-DARPin-GSx fusion proteins (x = 0, 1, 2, and 3). The Ex-DARPin fusion proteins were substantially stable, resulting in incomplete denaturation even at 80 °C. The in vitro bioactivity results demonstrated that Ex-DARPin fusion proteins could bind to HSA and activate GLP-1R. The Ex-DARPin fusion proteins had a comparable half-life (29-32 h), which is much longer than that of native Ex (0.5 h in rats). Subcutaneous injection of 25 nmol/kg Ex-DARPin fusion protein normalized blood glucose (BG) levels for at least 72 h in mice. The Ex-DARPin fusion proteins, injected at 25 nmol/kg every three days, significantly lowered BG, inhibited food consumption, and reduced body weight (BW) for 30 days in STZ-induced diabetic mice. Histological analysis of pancreatic tissues using H&E staining revealed that Ex-DARPin fusion proteins significantly improved the survival of pancreatic islets in diabetic mice. The differences in in vivo bioactivity of fusion proteins with different linker lengths were not significant. According to the findings in this study, long-acting Ex-DARPin fusion proteins designed by us hold promise for further development as antidiabetic and antiobesity therapeutic agents. Our findings also indicate that DARPins are a universal platform for generating long-acting therapeutic proteins via genetic fusion, thus broadening the application scope of DARPins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2023.106422 | DOI Listing |
Cancers (Basel)
January 2025
Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00122 Rome, Italy.
Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, 28029 Madrid, Spain.
Recent studies have demonstrated the association between constitutional ring chromosome 21 (r(21)c) and the development of B-cell acute lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21). iAMP21 acts as a driver which is often accompanied by secondary alterations that influence disease progression. Here, we report an atypical case of iAMP21 B-ALL with a unique molecular profile in the context of r(21)c.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical Oncology, IRCCS, 33081 Aviano, Italy.
Since the discovery of the first-generation ALK inhibitor, many other tyrosine kinase inhibitors have been demonstrated to be effective in the first line or further lines of treatment in patients with advanced non-small cell lung cancer with EMLA4-ALK translocation. This review traces the main milestones in the treatment of ALK-positive metastatic patients and the survival outcomes in the first-line and second-line settings with different ALK inhibitors. It presents the two options available for first-line treatment at the present time: sequencing different ALK inhibitors versus using the most potent inhibitor in front-line treatment.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an 716000, China.
As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. , a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the systems, systems, and systems. This study used the chromosome transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the system and related virulence phenotypes of , including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Food Technology, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria.
is a potential bacterial cell factory to develop delivery systems for vaccines and therapeutic proteins. Much progress has been made in applications using engineered against, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!