A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photochemical degradation of perfluorooctanoic acid under UV irradiation in the presence of Fe (III)-saturated montmorillonite. | LitMetric

Photochemical degradation of perfluorooctanoic acid under UV irradiation in the presence of Fe (III)-saturated montmorillonite.

Sci Total Environ

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China. Electronic address:

Published: June 2023

Perfluorooctanoic acid (PFOA) has attracted worldwide attention owing to its widespread distribution and potential ecological risks. Developing low-cost, green-chemical and highly efficient treatment approaches is significant for treating PFOA caused environmental issues. Herein, we propose a feasible PFOA degradation strategy under UV irradiation by adding Fe (III)-saturated montmorillonite (Fe-MMT), and the Fe-MMT could be regenerated after reaction. In our system consisting of 1 g L Fe-MMT and 24 μM PFOA, nearly 90 % initial PFOA could be decomposed within 48 h. The enhanced PFOA decomposition could be explained by the ligand-to-metal charge transfer mechanism based on the generated reactive oxygen species (ROSs) and the transformation of iron species in the MMT layers. Moreover, the special PFOA degradation pathway was revealed according to the intermediate identification and the density functional theory calculation. Further experiments demonstrated that even in the presence of co-existing natural organic natter (NOM) and inorganic ions, efficient PFOA removal could still be obtained in UV/Fe-MMT system. This study offers a green-chemical strategy for PFOA removal from contaminated waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162760DOI Listing

Publication Analysis

Top Keywords

pfoa
9
perfluorooctanoic acid
8
iii-saturated montmorillonite
8
pfoa degradation
8
pfoa removal
8
photochemical degradation
4
degradation perfluorooctanoic
4
acid irradiation
4
irradiation presence
4
presence iii-saturated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!