Network Pharmacology Prediction and Experimental Verification for Anti-Ferroptosis of Edaravone After Experimental Intracerebral Hemorrhage.

Mol Neurobiol

Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department of Key Discipline of Neurology, Southern China International Cooperation Base for Early Intervention and Functional Rehabilitation of Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China.

Published: July 2023

AI Article Synopsis

  • * A study using rats showed that Eda improved sensorimotor functions and reduced markers of ferroptosis, while in vitro tests demonstrated its ability to lessen mitochondrial damage and decrease oxidative stress.
  • * The protective effects of Eda against ICH were linked to its ability to suppress the MEK/ERK signaling pathway and regulate proteins associated with ferroptosis, indicating its potential as a therapeutic strategy.

Article Abstract

Neuronal ferroptosis plays an important role in secondary brain injuries after intracerebral hemorrhage (ICH). Edaravone (Eda) is a promising free radical scavenger that inhibits ferroptosis in neurological diseases. However, its protective effects and underlying mechanisms in ameliorating post-ICH ferroptosis remain unclear. We employed a network pharmacology approach to determine the core targets of Eda against ICH. Forty-two rats were subjected to successful striatal autologous whole blood injection (n=28) or sham operation (n=14). The 28 blood-injected rats were randomly assigned to either the Eda or vehicle group (n=14) for immediate administration and then for 3 consecutive days. Hemin-induced HT22 cells were used for in vitro studies. The effects of Eda in ICH on ferroptosis and the MEK/ERK pathway were investigated in vivo and in vitro. Network pharmacology-based analysis revealed that candidate targets of Eda-treated ICH might be related to ferroptosis; among which prostaglandin G/H synthase 2 (PTGS2) was a ferroptosis marker. In vivo experiments showed that Eda alleviated sensorimotor deficits and decreased PTGS2 expression (all p<0.05) after ICH. Eda rescued neuron pathological changes after ICH (increased NeuN cells and decreased FJC cells, all p<0.01). In vitro experiments showed that Eda reduced intracellular reactive oxygen species and reversed mitochondria damage. Eda repressed ferroptosis by decreasing malondialdehyde and iron deposition and by influencing ferroptosis-related protein expression (all p<0.05) in ICH rats and hemin-induced HT22 cells. Mechanically, Eda significantly suppressed phosphorylated-MEK and phosphorylated-ERK1/2 expression. These results indicate that Eda has protective effects on ICH injury through ferroptosis and MEK/ERK pathway suppression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-023-03279-xDOI Listing

Publication Analysis

Top Keywords

network pharmacology
8
intracerebral hemorrhage
8
eda ich
8
ich ferroptosis
8
ferroptosis
6
eda
5
pharmacology prediction
4
prediction experimental
4
experimental verification
4
verification anti-ferroptosis
4

Similar Publications

variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path.

View Article and Find Full Text PDF

, a medicinal plant traditionally used in Southeast Asia, exerts protective effects against various inflammatory diseases, primarily due to its rich alkaloid content. Despite substantial evidence supporting its anti-inflammatory properties, the biological activities of are unclear. This study aimed to elucidate anticolitis mechanisms of alkaloids (CFAs) using an integrative approach of network pharmacology and molecular docking analyses.

View Article and Find Full Text PDF

TClC effectively suppresses the growth and metastasis of NSCLC via polypharmacology.

Bioact Mater

March 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China.

Despite significant advances in targeted therapies and immunotherapies, non-small cell lung cancer (NSCLC) continues to present a global health challenge, with a modest five-year survival rate of 28 %, largely due to the emergence of treatment-resistant and metastatic tumors. In response, we synthesized a novel bioactive compound, ethyl 6-chlorocoumarin-3-carboxylyl L-theanine (TClC), which significantly inhibited NSCLC growth, epithelial mesenchymal transition (EMT), migration, and invasion and tumor growth and metastasis without inducing toxicity. TClC disrupts autocrine loops that promote tumor progression, particularly in stem-like CD133-positive NSCLC (CD133+ LC) cells, which are pivotal in tumor metastasis.

View Article and Find Full Text PDF

Effect of icariin on ovarian cancer: a combined network pharmacology and meta-analysis of studies approach.

Front Pharmacol

December 2024

Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Henan Key Laboratory of Fertility Protection and Aristogenesis, Shaoling District, Luohe, China.

Introduction: An abundance of experimental evidence indicates that icariin (ICA) could potentially exert an anti-tumor effect on ovarian cancer (OC). Nevertheless, the reliability of this evidence remains ambiguous. This study aimed to explore the impact of ICA on OC and the underlying mechanisms.

View Article and Find Full Text PDF

Background: Maslinic acid (MA), a pentacyclic triterpenoid compound derived from leaves and fruits of Olea europaea, bears multi-pharmacological properties. Our previous studies found that MA exerted a cardioprotective effect by modulating oxidative stress, inflammation, and apoptosis during myocardial ischemia-reperfusion injury (MIRI). Nevertheless, data regarding the anti-ferroptosis effects of MA on MI/RI remains unidentified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!