The dynamics of gene expression in crop grains has typically been investigated at the transcriptional level. However, this approach neglects translational regulation, a widespread mechanism that rapidly modulates gene expression to increase the plasticity of organisms. Here, we performed ribosome profiling and polysome profiling to obtain a comprehensive translatome data set of developing bread wheat (Triticum aestivum) grains. We further investigated the genome-wide translational dynamics during grain development, revealing that the translation of many functional genes is modulated in a stage-specific manner. The unbalanced translation between subgenomes is pervasive, which increases the expression flexibility of allohexaploid wheat. In addition, we uncovered widespread previously unannotated translation events, including upstream open reading frames (uORFs), downstream open reading frames (dORFs), and open reading frames (ORFs) in long noncoding RNAs, and characterized the temporal expression dynamics of small ORFs. We demonstrated that uORFs act as cis-regulatory elements that can repress or even enhance the translation of mRNAs. Gene translation may be combinatorially modulated by uORFs, dORFs, and microRNAs. In summary, our study presents a translatomic resource that provides a comprehensive and detailed overview of the translational regulation in developing bread wheat grains. This resource will facilitate future crop improvements for optimal yield and quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10226598 | PMC |
http://dx.doi.org/10.1093/plcell/koad075 | DOI Listing |
Theor Appl Genet
January 2025
Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Linfen, China.
Total 60-QRC for FLM traits were detected by meta-genomics analysis, nine major and stable QTL identified by DH population and validated, and a novel QTL Qflw.sxau-6BL was fine mapped. The flag leaf is an "ideotypic" morphological trait providing photosynthetic assimilates in wheat.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
112 candidate quantitative trait loci (QTLs) and 53 key candidate genes have been identified as associated with stomatal traits in wheat. These include bHLH, MADS-box transcription factors, and mitogen-activated protein kinases (MAPKs). Stomata is a common feature of the leaf surface of plants and serve as vital conduits for the exchange of gases (primarily CO₂ and water vapor) between plants and the external environment.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat () cultivars is limited.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Genetics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
The focus on increasing wheat ( L.) grain yield at the expense of grain quality and nutrient accumulation can lead to shortages in macronutrient minerals, which are dangerous for human health. This is important, especially in nations where bread wheat is used in most daily dietary regimens.
View Article and Find Full Text PDFFoods
December 2024
Department of life Science, Yuncheng University, Yuncheng 044000, China.
With an increasing number of people pursuing a healthy diet, people have gradually realized the significance of adequate dietary fiber in their diets. In this experiment, wheat bran was collected from eight regions in China with different longitudes and latitudes, different altitudes, and average temperatures during the filling period to study the differences in the Arabinoxylan (AX) of wheat bran. The higher the altitude of the wheat production area was, the higher the AX content in the wheat bran was.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!