Osteosarcopenia is a complex geriatric syndrome characterized by the presence of both sarcopenia and osteopenia/osteoporosis. This condition increases rates of disability, falls, fractures, mortality, and mobility impairments in older adults. The purpose of this study was to analyze the Fourier-transform infrared (FTIR) spectroscopy diagnostic power for osteosarcopenia in community-dwelling older women (n = 64; 32 osteosarcopenic and 32 non-osteosarcopenia). FTIR is a fast and reproducible technique highly sensitive to biological tissues, and a mathematical model was created using multivariate classification techniques that denoted the graphic spectra of the molecular groups. Genetic algorithm and support vector machine regression (GA-SVM) was the most feasible model, achieving 80.0% of accuracy. GA-SVM identified 15 wave numbers responsible for class differentiation, in which several amino acids (responsible for the proper activation of the mammalian target of rapamycin) and hydroxyapatite (an inorganic bone component) were observed. Imaging tests and low availability of instruments that allow the observation of osteosarcopenia involve high health costs for patients and restrictive indications. Therefore, FTIR can be used to diagnose osteosarcopenia due to its efficiency and low cost and to enable early detection in geriatric services, contributing to advances in science and technology that are potential "conventional" methods in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glad081DOI Listing

Publication Analysis

Top Keywords

fourier-transform infrared
8
osteosarcopenia community-dwelling
8
community-dwelling older
8
older women
8
osteosarcopenia
5
infrared spectroscopy
4
spectroscopy screening
4
screening tool
4
tool osteosarcopenia
4
women osteosarcopenia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!