Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nano-reduced iron (NRI) is a promising uranium adsorbent due to its strong reducibility and good selectivity, but it still faces the challenges of slow kinetics, limited and non-renewable active sites. In this work, we realized high efficiency uranium extraction under ultra-low cell voltage (-0.1 V) in seawater with 20 ppm UO (NO ) solution by coupling electrochemical mediated Fe /Fe redox and uranium extraction. The adsorption capacity and extraction efficiency of NRI after electrochemical uranium extraction (EUE) could reach 452 mg/g and 99.1 %, respectively. Combined with quasi-operando/operando characterization technologies, we clarified the mechanism of EUE and revealed that continuously regenerating Fe active sites by electroreduction could significantly enhance the property of EUE. This work here provides a new electrochemical mediated and low energy consumption uranium extraction strategy which also provides a reference for other metal resource recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202217601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!