Autonomous driving includes recognition, judgment, and control technologies, and is implemented using sensors such as cameras, LiDAR, and radar. However, recognition sensors are exposed to the outside environment and their performance may deteriorate because of the presence of substances that interfere with vision, such as dust, bird droppings, and insects, during operation. Research on sensor cleaning technology to solve this performance degradation has been limited. This study used various types and concentrations of blockage and dryness to demonstrate approaches to the evaluation of cleaning rates for selected conditions that afford satisfactory results. To determine the effectiveness of washing, the study used the following criteria: washer, 0.5 bar/s and air, 2 bar/s, with 3.5 g being used three times to test the LiDAR window. The study found that blockage, concentration, and dryness are the most important factors, and in that order. Additionally, the study compared new forms of blockage, such as those caused by dust, bird droppings, and insects, with standard dust that was used as a control to evaluate the performance of the new blockage types. The results of this study can be used to conduct various sensor cleaning tests and ensure their reliability and economic feasibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007043PMC
http://dx.doi.org/10.3390/s23052752DOI Listing

Publication Analysis

Top Keywords

sensor cleaning
12
dust bird
8
bird droppings
8
droppings insects
8
blockage
5
study
5
experimental analysis
4
analysis blockage
4
performance
4
blockage performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!