Smart farming (SF) applications rely on robust and accurate computer vision systems. An important computer vision task in agriculture is semantic segmentation, which aims to classify each pixel of an image and can be used for selective weed removal. State-of-the-art implementations use convolutional neural networks (CNN) that are trained on large image datasets. In agriculture, publicly available RGB image datasets are scarce and often lack detailed ground-truth information. In contrast to agriculture, other research areas feature RGB-D datasets that combine color (RGB) with additional distance (D) information. Such results show that including distance as an additional modality can improve model performance further. Therefore, we introduce WE3DS as the first RGB-D image dataset for multi-class plant species semantic segmentation in crop farming. It contains 2568 RGB-D images (color image and distance map) and corresponding hand-annotated ground-truth masks. Images were taken under natural light conditions using an RGB-D sensor consisting of two RGB cameras in a stereo setup. Further, we provide a benchmark for RGB-D semantic segmentation on the WE3DS dataset and compare it with a solely RGB-based model. Our trained models achieve up to 70.7% mean Intersection over Union (mIoU) for discriminating between soil, seven crop species, and ten weed species. Finally, our work confirms the finding that additional distance information improves segmentation quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007111 | PMC |
http://dx.doi.org/10.3390/s23052713 | DOI Listing |
J Cardiovasc Magn Reson
January 2025
Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
Purpose: To investigate image quality and agreement of derived cardiac function parameters in a novel joint image reconstruction and segmentation approach based on disentangled representation learning, enabling real-time cardiac cine imaging during free-breathing.
Methods: A multi-tasking neural network architecture, incorporating disentangled representation learning, was trained using simulated examinations based on data from a public repository along with MR scans specifically acquired for model development. An exploratory feasibility study evaluated the method on undersampled real-time acquisitions using an in-house developed spiral bSSFP pulse sequence in eight healthy participants and five patients with intermittent atrial fibrillation.
Sensors (Basel)
January 2025
Mechnical and Vehicle Engineering, Hunan University, Changsha 411082, China.
Chip defect detection is a crucial aspect of the semiconductor production industry, given its significant impact on chip performance. This paper proposes a lightweight neural network with dual decoding paths for LED chip segmentation, named LDDP-Net. Within the LDDP-Net framework, the receptive field of the MobileNetv3 backbone is modified to mitigate information loss.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Electrical and Computer Engineering Department, The University of Alabama, Tuscaloosa, AL 35487, USA.
Discretely monitoring traffic systems and tracking payloads on vehicle targets can be challenging when traversal occurs off main roads where overhead traffic cameras are not present. This work proposes a portable roadside vehicle detection system as part of a solution for tracking traffic along any path. Training semantic segmentation networks to automatically detect specific types of vehicles while ignoring others will allow the user to track payloads present only on certain vehicles of interest, such as train cars or semi-trucks.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Medical Device and Healthcare, Dongguk University, Seoul 04620, Republic of Korea.
Liver cancer has a high mortality rate worldwide, and clinicians segment liver vessels in CT images before surgical procedures. However, liver vessels have a complex structure, and the segmentation process is conducted manually, so it is time-consuming and labor-intensive. Consequently, it would be extremely useful to develop a deep learning-based automatic liver vessel segmentation method.
View Article and Find Full Text PDFPhys Med Biol
January 2025
College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, chongqing, Chongqing, 400065, CHINA.
In breast diagnostic imaging, the morphological variability of breast tumors and the inherent ambiguity of ultrasound images pose significant challenges. Moreover, multi-task computer-aided diagnosis systems in breast imaging may overlook inherent relationships between pixel-wise segmentation and categorical classification tasks. Approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!