A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Small Sample Hyperspectral Image Classification Based on the Random Patches Network and Recursive Filtering. | LitMetric

In recent years, different deep learning frameworks were introduced for hyperspectral image (HSI) classification. However, the proposed network models have a higher model complexity, and do not provide high classification accuracy if few-shot learning is used. This paper presents an HSI classification method that combines random patches network (RPNet) and recursive filtering (RF) to obtain informative deep features. The proposed method first convolves image bands with random patches to extract multi-level deep RPNet features. Thereafter, the RPNet feature set is subjected to dimension reduction through principal component analysis (PCA), and the extracted components are filtered using the RF procedure. Finally, the HSI spectral features and the obtained RPNet-RF features are combined to classify the HSI using a support vector machine (SVM) classifier. In order to test the performance of the proposed RPNet-RF method, some experiments were performed on three widely known datasets using a few training samples for each class, and classification results were compared with those obtained by other advanced HSI classification methods adopted for small training samples. The comparison showed that the RPNet-RF classification is characterized by higher values of such evaluation metrics as overall accuracy and Kappa coefficient.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006866PMC
http://dx.doi.org/10.3390/s23052499DOI Listing

Publication Analysis

Top Keywords

random patches
12
hsi classification
12
hyperspectral image
8
patches network
8
recursive filtering
8
training samples
8
classification
7
hsi
5
small sample
4
sample hyperspectral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!