Activity monitoring combined with machine learning (ML) methods can contribute to detailed knowledge about daily physical behavior in older adults. The current study (1) evaluated the performance of an existing activity type recognition ML model (HARTH), based on data from healthy young adults, for classifying daily physical behavior in fit-to-frail older adults, (2) compared the performance with a ML model (HAR70+) that included training data from older adults, and (3) evaluated the ML models on older adults with and without walking aids. Eighteen older adults aged 70-95 years who ranged widely in physical function, including usage of walking aids, were equipped with a chest-mounted camera and two accelerometers during a semi-structured free-living protocol. Labeled accelerometer data from video analysis was used as ground truth for the classification of walking, standing, sitting, and lying identified by the ML models. Overall accuracy was high for both the HARTH model (91%) and the HAR70+ model (94%). The performance was lower for those using walking aids in both models, however, the overall accuracy improved from 87% to 93% in the HAR70+ model. The validated HAR70+ model contributes to more accurate classification of daily physical behavior in older adults that is essential for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006863PMC
http://dx.doi.org/10.3390/s23052368DOI Listing

Publication Analysis

Top Keywords

older adults
28
daily physical
16
physical behavior
16
har70+ model
16
behavior older
12
walking aids
12
activity type
8
type recognition
8
model
8
recognition model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!