AI Article Synopsis

  • Plastic film capacitors are favored for their durability and energy storage capabilities but face limitations due to the low dielectric constant of BOPP.
  • Poly(vinylidene fluoride) (PVDF) presents a better dielectric constant but suffers from high losses and heat generation.
  • A PTFE coating on PVDF significantly reduces leakage current, improving breakdown strength by 30.8% and enhancing energy storage density by 70%, offering a promising approach for using PVDF in capacitors.

Article Abstract

Plastic film capacitors are widely used in pulse and energy storage applications because of their high breakdown strength, high power density, long lifetime, and excellent self-healing properties. Nowadays, the energy storage density of commercial biaxially oriented polypropylene (BOPP) is limited by its low dielectric constant (~2.2). Poly(vinylidene fluoride) (PVDF) exhibits a relatively high dielectric constant and breakdown strength, making it a candidate material for electrostatic capacitors. However, PVDF presents significant losses, generating a lot of waste heat. In this paper, under the guidance of the leakage mechanism, a high-insulation polytetrafluoroethylene (PTFE) coating is sprayed on the surface of a PVDF film. The potential barrier at the electrode-dielectric interface is raised by simply spraying PTFE and reducing the leakage current, and then the energy storage density is increased. After introducing the PTFE insulation coating, the high-field leakage current in the PVDF film shows an order of magnitude reduction. Moreover, the composite film presents a 30.8% improvement in breakdown strength, and a 70% enhancement in energy storage density is simultaneously achieved. The all-organic structure design provides a new idea for the application of PVDF in electrostatic capacitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006870PMC
http://dx.doi.org/10.3390/polym15051305DOI Listing

Publication Analysis

Top Keywords

energy storage
20
breakdown strength
16
storage density
12
composite film
8
high breakdown
8
storage applications
8
dielectric constant
8
electrostatic capacitors
8
pvdf film
8
leakage current
8

Similar Publications

Platanus occidentalis L. fruit-derived carbon materials for electrochemical potassium storage.

Nanotechnology

January 2025

Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.

View Article and Find Full Text PDF

Stabilizing bicontinuous particle-stabilized emulsions formed solvent transfer-induced phase separation.

Soft Matter

January 2025

Van 't Hoff Laboratory of Physical and Colloid Chemistry, Department of Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.

Bicontinuous particle-stabilized emulsions (bijels) are unique soft materials that combine the bulk properties of two immiscible fluids into a single interconnected structure. This structure is achieved through the formation of two interwoven fluid networks, stabilized by an interfacial layer of colloidal particles. Bijels with submicron-scale domain networks can be synthesized solvent transfer-induced phase separation (STrIPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!