Plastic film capacitors are widely used in pulse and energy storage applications because of their high breakdown strength, high power density, long lifetime, and excellent self-healing properties. Nowadays, the energy storage density of commercial biaxially oriented polypropylene (BOPP) is limited by its low dielectric constant (~2.2). Poly(vinylidene fluoride) (PVDF) exhibits a relatively high dielectric constant and breakdown strength, making it a candidate material for electrostatic capacitors. However, PVDF presents significant losses, generating a lot of waste heat. In this paper, under the guidance of the leakage mechanism, a high-insulation polytetrafluoroethylene (PTFE) coating is sprayed on the surface of a PVDF film. The potential barrier at the electrode-dielectric interface is raised by simply spraying PTFE and reducing the leakage current, and then the energy storage density is increased. After introducing the PTFE insulation coating, the high-field leakage current in the PVDF film shows an order of magnitude reduction. Moreover, the composite film presents a 30.8% improvement in breakdown strength, and a 70% enhancement in energy storage density is simultaneously achieved. The all-organic structure design provides a new idea for the application of PVDF in electrostatic capacitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006870 | PMC |
http://dx.doi.org/10.3390/polym15051305 | DOI Listing |
Nanotechnology
January 2025
Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.
View Article and Find Full Text PDFSoft Matter
January 2025
Van 't Hoff Laboratory of Physical and Colloid Chemistry, Department of Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
Bicontinuous particle-stabilized emulsions (bijels) are unique soft materials that combine the bulk properties of two immiscible fluids into a single interconnected structure. This structure is achieved through the formation of two interwoven fluid networks, stabilized by an interfacial layer of colloidal particles. Bijels with submicron-scale domain networks can be synthesized solvent transfer-induced phase separation (STrIPS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!