The dynamic development of nanotechnology has enabled the development of innovative and novel techniques for the production and use of nanomaterials. One of them is the use of nanocapsules based on biodegradable biopolymer composites. Closing compounds with antimicrobial activity inside the nanocapsule cause the gradual release of biologically active substances into the environment, and the effect on pathogens is regular, prolonged and targeted. Known and used in medicine for years, propolis, thanks to the synergistic effect of active ingredients, has antimicrobial, anti-inflammatory and antiseptic properties. Biodegradable and flexible biofilms were obtained, the morphology of the composite was determined using scanning electron microscopy (SEM) and particle size was measured by the dynamic light scattering (DLS) method. Antimicrobial properties of biofoils were examined on commensal skin bacteria and pathogenic isolates based on the growth inhibition zones. The research confirmed the presence of spherical nanocapsules with sizes in the nano/micrometric scale. The properties of the composites were characterized by infrared (IR) and ultraviolet (UV) spectroscopy. It has been proven that hyaluronic acid is a suitable matrix for the preparation of nanocapsules, as no significant interactions between hyaluronan and the tested compounds have been demonstrated. Color analysis and thermal properties, as well as the thickness and mechanical properties of the obtained films, were determined. Antimicrobial properties of the obtained nanocomposites were strong in relation to all analyzed bacterial and yeast strains isolated from various regions of the human body. These results suggest high potential applicability of the tested biofilms as effective materials for dressings to be applied on infected wounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006925 | PMC |
http://dx.doi.org/10.3390/polym15051271 | DOI Listing |
Int J Biol Macromol
December 2024
School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China. Electronic address:
In this study, physicochemical and structural properties of gelatin-zein blending films and bilayer films prepared through blending and layer-by-layer self-assembly method under TGase crosslinking were systematically compared. The ratios of gelatin to zein examined were 2:1, 1:1, and 1:2. Results showed that the tensile strength of both blending films and bilayer films was the highest when the ratio of gelatin to zein was 2:1, which was 4.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Italy.
Hypothesis: Bubbles oscillating near a free surface are common across numerous systems. Thin liquid films (TLFs) formed between an oscillating bubble and a free surface can exhibit distinct morphological features influenced by interfacial properties, evaporation, and deformation history. We hypothesize that a continuous film presence throughout oscillation results in a wimple morphology, whereas intermittent film presence leads to a dimple formation.
View Article and Find Full Text PDFSci Rep
December 2024
Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada.
RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Chemical Engineering Sciences, Foundation of Research and Technology- Hellas (FORTH/ICE-HT), Stadiou Street, Platani, Patras 26504, Greece.
Due to their outstanding electrical and thermal properties, graphene and related materials have been proposed as ideal candidates for the development of lightweight systems for thermoelectric applications. Recently, the nanolaminate architecture that entails alternation of continuous graphene monolayers and ultrathin polymer films has been proposed as an efficient route for the development of composites with impressive physicochemical properties. In this work, we present a novel layer-by-layer approach for the fabrication of highly ordered, flexible, heat-resistant, and electrically conductive freestanding graphene/polymer nanolaminates through alternating Marangoni-driven self-assembly of reduced graphene oxide (rGO) and poly(ether imide) (PEI) films.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
This study aims to explore the redispersibility of dehydrated nanocellulose with p-toluenesulfonic acid (p-TsOH) fractionated lignin as an eco-friendly and cost-effective capping agent, to cope with the challenge of irreversible agglomeration and thus loss of nanoscale of nanocellulose upon dehydration. The intermixing of nanocellulose and p-TsOH fractionated lignin was achieved using an aqueous ethanol solution as the medium and films of lignin-blending cellulose nanofibers (L + CNF) with excellent redispersing properties were obtained after facile air-drying. With 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!