Characterizing Pure Polymers under High Speed Compression for the Micromechanical Prediction of Unidirectional Composites.

Polymers (Basel)

Department of Materials, Textiles and Chemical Engineering (MaTCh), Mechanics of Materials and Structures (MMS), Tech Lane Ghent Science Park-Campus A, Ghent University (UGent), Technologiepark-Zwijnaarde 46, Zwijnaarde, 9052 Ghent, Belgium.

Published: March 2023

The nonlinear behaviour of fibre-reinforced polymer composites (FRPC) in transverse loading is mainly induced by the constituent polymer matrix. The thermoset and thermoplastic matrices are typically rate- and temperature-dependent, complicating the dynamic material characterization process. Under dynamic compression, the microstructure of the FRPC develops local strains and local strain rates whose values can be much higher than those applied at macroscopic level. The correlation between the local (microscopic) values and the measurable (macroscopic) ones still present challenges when applying the strain rate in the range 10-3-103 s-1. This paper presents an in-house uniaxial compression test setup to provide robust stress-strain measurements applying strain rates up to 100 s-1. A semi-crystalline thermoplastic polyetheretherketone (PEEK) and a toughened thermoset epoxy PR520 are assessed and characterized. The thermomechanical response of the polymers is further modelled using an advanced glassy polymer model, naturally capturing the isothermal to adiabatic transition. A micromechanical model of a unidirectional composite undergoing dynamic compression is developed by using both validated polymers as matrices reinforced by carbon fibres (CF) using Representative Volume Element (RVE) models. These RVEs are used to analyse the correlation between the micro- and macroscopic thermomechanical response of the CF/PR520 and CF/PEEK systems investigated at intermediate to high strain rates. Both systems experience an excessive strain localization with local plastic strain about 19% when a macroscopic strain of 3.5% is applied. The comparison of using a thermoplastic and a thermoset as a matrix in composites is discussed with regard to the rate-dependence, the interface debonding and the self-heating effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007160PMC
http://dx.doi.org/10.3390/polym15051262DOI Listing

Publication Analysis

Top Keywords

strain rates
12
dynamic compression
8
applying strain
8
thermomechanical response
8
strain
7
characterizing pure
4
pure polymers
4
polymers high
4
high speed
4
compression
4

Similar Publications

Background: The number of patients with neurological disorders and severe disability is increasing globally. These patients often need help with positioning and the amount of support varies with their level of impairment. High rates of work-related musculoskeletal disorders are observed among healthcare professionals (HCP) with patient contact due to injuries during manual handling.

View Article and Find Full Text PDF

Mutation in Linked to Altered O-Antigen Biosynthesis and Attenuated Virulence in Rough Infantis Variant.

Vet Sci

November 2024

Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA.

serovar Infantis has emerged as a prevalent foodborne pathogen in poultry with significant global health implications. This study investigates the molecular characteristics influencing virulence in a Infantis rough variant collected from a poultry farm in the USA. In this study, whole genome sequencing and comparative genomics were performed on smooth and rough poultry Infantis isolates, while chicken embryo lethality assay was conducted to assess their virulence.

View Article and Find Full Text PDF

() represents one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. It is a part of the infamous ESKAPE group, which is highly connected with increased rates of healthcare-associated infections and antimicrobial resistance. can cause a large variety of diseases.

View Article and Find Full Text PDF

Accurate replication of soft tissue properties is essential for the development of car crash test dummy skin to ensure the precision of biomechanical injury data. However, the intricacy of multi-layer soft tissue poses challenges in standardizing the development and testing of dummy skin materials to emulate soft tissue properties. This study presents a comprehensive testing and analysis of the compressive mechanical properties of both single and multi-layered soft tissues and car crash dummy skin materials, aiming to enhance the biofidelity of dummy skin.

View Article and Find Full Text PDF

Anti-Biofilm Performance of Resin Nanopillars Inspired from Cicada Wing Surface for spp.

Biomimetics (Basel)

December 2024

Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680, Osaka, Japan.

The increase in infections derived from biofilms from spp. prompted us to develop novel strategies to inhibit biofilm development. Nanoscale protrusion structures (nanopillars) observed on the wings of dragonflies and cicadas have recently gained notable attention owing to their physical, antimicrobial, and bactericidal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!