Parylene C has been widely used in the fields of microelectromechanical systems (MEMS) and electronic device encapsulation because of its unique properties, such as biocompatibility and conformal coverage. However, its poor adhesion and low thermal stability limit its use in a wider range of applications. This study proposes a novel method for improving the thermal stability and enhancing the adhesion between Parylene and Si by copolymerizing Parylene C with Parylene F. The successful preparation of Parylene copolymer films containing different ratios of Parylene C and Parylene F was confirmed using Fourier-transform infrared spectroscopy and surface energy calculations. The proposed method resulted in the copolymer film having an adhesion 10.4 times stronger than that of the Parylene C homopolymer film. Furthermore, the friction coefficients and cell culture capability of the Parylene copolymer films were tested. The results indicated no degradation compared with the Parylene C homopolymer film. This copolymerization method significantly expands the applications of Parylene materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007139PMC
http://dx.doi.org/10.3390/polym15051249DOI Listing

Publication Analysis

Top Keywords

parylene
12
parylene parylene
12
thermal stability
12
parylene copolymer
8
copolymer films
8
parylene homopolymer
8
homopolymer film
8
copolymerization parylene
4
parylene enhance
4
adhesion
4

Similar Publications

The development of bionic organ-on-a-chip technology relies heavily on advancements in in situ sensors and biochip packaging. By integrating precise biological and fluid condition sensing with microfluidics and electronic components, long-term dynamic closed-loop culture systems can be achieved. This study aims to develop biocompatible heterogeneous packaging and laser surface modification techniques to enable the encapsulation of electronic components while minimizing their impact on fluid dynamics.

View Article and Find Full Text PDF

Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used.

View Article and Find Full Text PDF

Chronic implantable flexible serpentine probe reveals impaired spatial coding of place cells in epilepsy.

Natl Sci Rev

February 2025

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.

The development of minimally invasive and reliable electrode probes for neural signal recording is crucial for advancing neuroscience and treating major brain disorders. Flexible neural probes offer superior long-term recording capabilities over traditional rigid probes. This study introduces a parylene-based serpentine electrode probe for stable, long-term neural monitoring.

View Article and Find Full Text PDF

Ethanol (EtOH) gas detection has garnered considerable attention owing to its wide range of applications in industries such as food, pharmaceuticals, medical diagnostics, and fuel management. The development of highly sensitive EtOH-gas sensors has become a focus of research. This study proposes an optical interferometric surface stress sensor for detecting EtOH gas.

View Article and Find Full Text PDF

Sepsis Diagnosis Based on a Parylene Matrix Chip Using LPC16:0 as a Biomarker in Comparison with Colorimetry of Total Phospholipid.

ACS Appl Bio Mater

January 2025

Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, South Korea.

For the medical diagnosis of sepsis, it is crucial to differentiate infectious inflammation from noninfectious symptoms to prevent acute aggravation. Herein, a diagnosis for early stage sepsis was performed using LPC 16:0 and total phospholipids as small molecular biomarkers. The measurement of LPC 16:0 was conducted using a parylene matrix chip, which was developed to effectively detect small molecules in laser desorption/ionization mass spectrometry (LDI-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!