A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Independent Heating Performances in the Sub-Zero Environment of MWCNT/PDMS Composite with Low Electron-Tunneling Energy. | LitMetric

Independent Heating Performances in the Sub-Zero Environment of MWCNT/PDMS Composite with Low Electron-Tunneling Energy.

Polymers (Basel)

Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Published: February 2023

The structural stability of various structures (railroads, bridges, buildings, etc.) is lowered due to freezing because of the decreasing outside temperature in winter. To prevent damage from freezing, a technology for de-icing has been developed using an electric-heating composite. For this purpose, a highly electrically conductive composite film with multi-wall carbon nanotubes (MWCNTs) uniformly dispersed in a polydimethylsiloxane (PDMS) matrix through a three-roll process was fabricated by shearing the MWCNT/PDMS paste, through a two-roll process. The electrical conductivity and the activation energy of the composite were 326.5 S/m and 8.0 meV at 5.82 Vol% of MWCNTs, respectively. The dependence of the electric-heating performance (heating rate and temperature change) on the applied voltage and environmental temperature (from -20 °C to 20 °C) was evaluated. The heating rate and effective-heat-transfer characteristics were observed to decrease as the applied voltage increased, while they showed the opposite tendency when the environmental temperature was at sub-zero temperatures. Nevertheless, the overall heating performance (heating rate and temperature change) was maintained with little significant difference in the considered external-temperature range. The unique heating behaviors can result from the low activation energy and the negative-temperature () coefficient of resistance () (NTCR, d/d < 0) of the MWCNT/PDMS composite.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007197PMC
http://dx.doi.org/10.3390/polym15051171DOI Listing

Publication Analysis

Top Keywords

heating rate
12
mwcnt/pdms composite
8
activation energy
8
performance heating
8
rate temperature
8
temperature change
8
applied voltage
8
environmental temperature
8
composite
5
temperature
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!