Somatic embryogenesis in (tamarillo) has proven to be an effective model system for studying morphogenesis, since optimized plant regeneration protocols are available, and embryogenic competent cell lines can be induced from different explants. Nevertheless, an efficient genetic transformation system for embryogenic callus (EC) has not yet been implemented for this species. Here, an optimized faster protocol of genetic transformation using is described for EC. The sensitivity of EC to three antibiotics was determined, and kanamycin proved to be the best selective agent for tamarillo callus. Two strains, EHA105 and LBA4404, both harboring the p35SGUSINT plasmid, carrying the reporter gene for β-glucuronidase () and the marker gene neomycin phosphotransferase (), were used to test the efficiency of the process. To increase the success of the genetic transformation, a cold-shock treatment, coconut water, polyvinylpyrrolidone and an appropriate selection schedule based on antibiotic resistance were employed. The genetic transformation was evaluated by GUS assay and PCR-based techniques, and a 100% efficiency rate was confirmed in the kanamycin-resistant EC clumps. Genetic transformation with the EHA105 strain resulted in higher values for insertion in the genome. The protocol presented provides a useful tool for functional gene analysis and biotechnology approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005457 | PMC |
http://dx.doi.org/10.3390/plants12051202 | DOI Listing |
Adv Biotechnol (Singap)
September 2024
Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
Plant genetic transformation is a pivotal and essential step in modifying important agronomic traits using biotechnological tools, which primarily depend on the efficacy of transgene delivery and the plant regeneration system. Over the years, advancements in the development of delivery methods and regeneration systems have contributed to plant engineering and molecular breeding. Recent studies have demonstrated that the efficiency of plant transformation can be improved by simultaneously delivering meristem-developmental regulators, utilizing virus-mediated gene editing, and executing non-sterile in planta manipulations.
View Article and Find Full Text PDFMol Cancer Res
January 2025
Weill Cornell Medicine, New York, NY, United States.
Kaposi Sarcoma (KS) is a frequently aggressive malignancy caused by Kaposi sarcoma herpesvirus (KSHV/HHV-8). People with immunodeficiencies, including HIV, are at increased risk for developing KS, but our understanding of the contributions of the cellular genome to KS pathogenesis remains limited. To determine if there are cellular genetic alterations in KS that might provide biological or therapeutic insights, we performed whole exome sequencing on 78 KS tumors and matched normal control skin from 59 adults with KS (46 with HIV-associated KS and 13 with HIV-negative KS) receiving treatment at the Uganda Cancer Institute in Kampala, Uganda.
View Article and Find Full Text PDFGenetics
January 2025
Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
Forward genetic screens of mutant populations are fundamental for functional genomics studies. However, isolating independent mutant alleles to molecularly identify causal genes is challenging in species recalcitrant to genetic manipulation. Here, we demonstrate that classic seed EMS mutagenesis coupled with genome sequencing can overcome this limitation in sorghum.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.
Unlabelled: Coronaviruses have large, positive-sense single-stranded RNA genomes that challenge conventional strategies for mutagenesis. Yeast genetics has been used to manipulate large viral genomes, including those of herpesviruses and coronaviruses. This method, known as transformation-associated recombination (TAR), involves assembling complete viral genomes from dsDNA copies of viral genome fragments via homologous recombination in .
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!