Phosphorus (P) is a vital macronutrient required for soybean growth and development but is a finite resource in agriculture worldwide. Low inorganic P availability in soil is often a significant constraint for soybean production. However, little is known about the response of P supply on agronomic, root morphology, and physiological mechanisms of contrasting soybean genotypes at various growth stages and the possible effects of different P on soybean yield and yield components. Therefore, we conducted two concurrent experiments using the soil-filled pots with six genotypes (deep-root system: PI 647960, PI 398595, PI 561271, PI 654356; and shallow-root system: PI 595362, PI 597387) and two P levels [0 (P0) and 60 (P60) mg P kg dry soil] and deep PVC columns with two genotypes (PI 561271 and PI 595362) and three P levels [0 (P0), 60 (P60), and 120 (P120) mg P kg dry soil] in a temperature-controlled glasshouse. The genotype × P level interaction showed that increased higher P supply increased leaf area, shoot and root dry weights, total root length, shoot, root, and seed P concentrations and contents, P use efficiency (PUE), root exudation, and seed yield at different growth stages in both experiments. At the vegetative stage (Experiment 1), shallow-rooted genotypes with shorter life cycles had more root dry weight (39%) and total root length (38%) than deep-rooted genotypes with longer life cycles under different P levels. Genotype PI 654356 produced significantly higher (22% more) total carboxylates than PI 647960 and PI 597387 under P60 but not at P0. Total carboxylates positively correlated with root dry weight, total root length, shoot and root P contents, and physiological PUE. The deep-rooted genotypes (PI 398595, PI 647960, PI 654356, and PI 561271) had the highest PUE and root P contents. In Experiment 2, at the flowering stage, genotype PI 561271 had the greatest leaf area (202%), shoot dry weight (113%), root dry weight (143%), and root length (83%) relative to the short-duration, shallow-rooted genotype PI 595362 with external P applied (P60 and P120), with similar trends at maturity. PI 595362 had a greater proportion of carboxylates as malonate (248%), malate (58%), and total carboxylates (82%) than PI 561271 under P60 and P120 but no differences at P0. At maturity, the deep-rooted genotype PI 561271 had greater shoot, root, and seed P contents and PUE than the shallow-rooted genotype PI 595362 under increased P rates but no differences at P0. Further, the genotype PI 561271 had higher shoot (53%), root (165%), and seed yield (47%) than PI 595362 with P60 and P120 than P0. Therefore, inorganic P application enhances plant resistance to the soil P pool and maintains high soybean biomass production and seed yield.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005312 | PMC |
http://dx.doi.org/10.3390/plants12051110 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, 06120 Halle (Saale), Germany.
The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO, 80523, USA.
This report presents two phased chromosome-scale genome assemblies of allotetraploid Salsola tragus (2n=4x=36) and fills the current genomics resource gap for this species. Flow cytometry estimated 1C genome size was 1.319 Gbp.
View Article and Find Full Text PDFPharmaceutics
January 2025
Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia.
This study aimed to develop gastroretentive tablets based on mucoadhesive-floating systems with encapsulated gentian (, Gentianaceae) root extract to overcome the low bioavailability and short elimination half-life of gentiopicroside, a dominant bioactive compound with systemic effect. The formulation also aimed to promote the local action of the extract in the stomach. Tablets were obtained by direct compression of sodium bicarbonate (7.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
This study explores the development of electrospun nanofibers incorporating bioactive compounds from (Ashwagandha) root extract, focusing on optimizing extraction conditions and nanofiber composition to maximize biological activity and application potential. Using the Design of Experiment (DoE) approach, optimal extraction parameters were identified as 80% methanol, 70 °C, and 60 min, yielding high levels of phenolic compounds and antioxidant activity. Methanol concentration emerged as the critical factor influencing phytochemical properties.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China.
Planting aluminum-tolerant legume green manure is a cost-effective and sustainable method to increase soil fertility as well as decrease Al toxicity in acidic soils. By analyzing the relative root elongation of seven legume green manure species, common vetch ( L.) was identified as an Al-resistant species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!