A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Au Nanoparticle Agglomeration on SERS Signal Amplification. | LitMetric

Effect of Au Nanoparticle Agglomeration on SERS Signal Amplification.

Nanomaterials (Basel)

Moscow Institute of Physics and Technology, National Research University, 9 Institutskiy per., Dolgoprudny, 141701 Moscow, Russia.

Published: February 2023

An analyzed substance's signal intensity and detection sensitivity in surface-enhanced Raman spectroscopy (SERS) significantly depend on the size and agglomeration degree of nanoparticles (NPs) forming the enhancing structure. Structures were manufactured by aerosol dry printing (ADP), where NPs' agglomeration depends on printing conditions and additional particle modification techniques. The influence of agglomeration degree on SERS signal enhancement was studied in three types of printed structures using the methylene blue model molecule as an analyte. We demonstrated that the ratio between individual NPs and agglomerates in a studied structure strongly affects SERS signal amplification, and structures formed mainly from non-agglomerated NPs enhance the signal better. In this sense, aerosol NPs modified by pulsed laser radiation provide better results than thermally modified NPs, since in laser modification a larger number of individual NPs is observed due to the absence of secondary agglomeration effects in the gas stream. However, increasing gas flow may minimize the secondary agglomeration, since the time allotted for the agglomeration processes is reduced. In this paper, we show how different NPs' agglomeration tendencies influence SERS enhancement to demonstrate the process of using ADP to form inexpensive and highly efficient SERS substrates with huge application potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005436PMC
http://dx.doi.org/10.3390/nano13050812DOI Listing

Publication Analysis

Top Keywords

sers signal
12
signal amplification
8
agglomeration degree
8
nps' agglomeration
8
individual nps
8
secondary agglomeration
8
agglomeration
7
sers
6
nps
6
signal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!