Hypervalent iodine reagents are in high current demand due to their exceptional reactivity in oxidative transformations, as well as in diverse umpolung functionalization reactions. Cyclic hypervalent iodine compounds, known under the general name of benziodoxoles, possess improved thermal stability and synthetic versatility in comparison with their acyclic analogs. Aryl-, alkenyl-, and alkynylbenziodoxoles have recently received wide synthetic applications as efficient reagents for direct arylation, alkenylation, and alkynylation under mild reaction conditions, including transition metal-free conditions as well as photoredox and transition metal catalysis. Using these reagents, a plethora of valuable, hard-to-reach, and structurally diverse complex products can be synthesized by convenient procedures. The review covers the main aspects of the chemistry of benziodoxole-based aryl-, alkynyl-, and alkenyl- transfer reagents, including preparation and synthetic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004369 | PMC |
http://dx.doi.org/10.3390/molecules28052136 | DOI Listing |
Adv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFApplications of genetic code expansion in live cells are widespread and continually emerging, yet they have been limited by their reliance on the supplementation of non-standard amino acids (nsAAs) to cell culturing media. While advances in cell-free biocatalysis are improving nsAA synthesis cost and sustainability, such processes remain reliant on multi-step processes of product isolation followed by supplementation to engineered cells. Here, we report the design of a modular and genetically encoded system that combines the steps of biosynthesis of diverse phenylalanine derivatives, which are the most frequently used family of nsAAs for genetic code expansion, and their site-specific incorporation within target proteins using a single engineered bacterial host.
View Article and Find Full Text PDFAsian Spine J
December 2024
National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland.
Computed tomography (CT) is widely used for the diagnosis and surgical treatment of spinal pathologies, particularly for pedicle screw placement. However, CT's limitations, notably radiation exposure, necessitate the development of alternative imaging techniques. Synthetic CT (sCT), which generates CT-like images from existing magnetic resonance imaging (MRI) scans, offers a promising alternative to reduce radiation exposure.
View Article and Find Full Text PDFNanoscale
January 2025
Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India.
Utilizing the soft-lattice nature of metal halide perovskites, we employ post-synthetic cross-ion exchange to synthesize a series of narrow band-gap colloidal nanocrystals of methylammonium-based lead iodide solid solutions of composition FAMAPbI, as well as those of triple-cation composition CsFAMAPbI (TCPbI). The ability to finely tune the compositions not only helps in tailoring the optical properties in the near-infrared region, but also improves the stability of these colloidal nanocrystals towards moisture, which has been demonstrated as compared to their bulk counterparts. The thermal stability of these solid solutions is also comparable to that of the bulk, as evidenced by thermogravimetric studies.
View Article and Find Full Text PDFBMC Chem
January 2025
Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
The development of a newly fabricated ion-selective electrode (ISE) solid-contacted type for the determination of prucalopride succinate represents a significant advancement in analytical chemistry, particularly in the context of green chemistry principles. The optimization process involved numerous trials to ensure the selection of a cation exchanger and ionophore that offer high sensitivity and selectivity for prucalopride succinate. Through these optimization trials, sodium tetrakis was identified as the most suitable cation exchanger, while calix [8] arene demonstrated the highest affinity towards prucalopride succinate as the ionophore.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!