A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Environmental Sustainable Cement Mortars Based on Polyethylene Terephthalate from Recycling Operations. | LitMetric

Environmental Sustainable Cement Mortars Based on Polyethylene Terephthalate from Recycling Operations.

Materials (Basel)

Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy.

Published: March 2023

The building and construction industry is a key sector behind the ecological transition in that it is one of the main responsible factors in the consumption of natural resources. Thus, in line with circular economy, the use of waste aggregates in mortars is a possible solution to increase the sustainability of cement materials. In the present paper, polyethylene terephthalate (PET) from bottle scraps (without chemical pretreatment) was used as aggregate in cement mortars to replace conventional sand aggregate (20%, 50% and 80% by weight). The fresh and hardened properties of the innovative mixtures proposed were evaluated through a multiscale physical-mechanical investigation. The main results of this study show the feasibility of the reuse of PET waste aggregates as substitutes for natural aggregates in mortars. The mixtures with bare PET resulted in less fluid than the specimens with sand; this was ascribed to the higher volume of the recycled aggregates with respect to sand. Moreover, PET mortars showed a high tensile strength and energy absorption capacity (with Rf = 1.9 ÷ 3.3 MPa, Rc = 6 ÷ 13 MPa); instead, sand samples were characterized by a brittle rupture. The lightweight specimens showed a thermal insulation increase ranging 65-84% with respect to the reference; the best results were obtained with 800 g of PET aggregate, characterized by a decrease in conductivity of approximately 86% concerning the control. The properties of these environmentally sustainable composite materials may be suitable for non-structural insulating artifacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004574PMC
http://dx.doi.org/10.3390/ma16052111DOI Listing

Publication Analysis

Top Keywords

cement mortars
8
polyethylene terephthalate
8
waste aggregates
8
aggregates mortars
8
mortars
5
pet
5
environmental sustainable
4
sustainable cement
4
mortars based
4
based polyethylene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!