Hybrid Fluoro-Based Polymers/Graphite Foil for H/Natural Gas Separation.

Materials (Basel)

Department of Civil, Energy, Environmental and Material Engineering, Mediterranea University of Reggio Calabria, 89124 Reggio Calabria, Italy.

Published: March 2023

Membrane technologies and materials development appear crucial for the hydrogen/natural gas separation in the impending transition to the hydrogen economy. Transporting hydrogen through the existing natural gas network could result less expensive than a brand-new pipe system. Currently, many studies are focused on the development of novel structured materials for gas separation applications, including the combination of various kind of additives in polymeric matrix. Numerous gas pairs have been investigated and the gas transport mechanism in those membranes has been elucidated. However, the selective separation of high purity hydrogen from hydrogen/methane mixtures is still a big challenge and nowadays needs a great improvement to promote the transition towards more sustainable energy source. In this context, because of their remarkable properties, fluoro-based polymers, such as PVDF-HFP and Nafion, are among the most popular membrane materials, even if a further optimization is needed. In this study, hybrid polymer-based membranes were deposited as thin films on large graphite surfaces. Different weight ratios of PVDF-HFP and Nafion polymers supported over 200 μm thick graphite foils were tested toward hydrogen/methane gas mixture separation. Small punch tests were carried out to study the membrane mechanical behaviour, reproducing the testing conditions. Finally, the permeability and the gas separation activity of hydrogen/methane over membranes were investigated at room temperature (25 °C) and near atmospheric pressure (using a pressure difference of 1.5 bar). The best performance of the developed membranes was registered when the 4:1 polymer PVDF-HFP/Nafion weight ratio was used. In particular, starting from the 1:1 hydrogen/methane gas mixture, a 32.6% (v%) H enrichment was measured. Furthermore, there was a good agreement between the experimental and theoretical selectivity values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004322PMC
http://dx.doi.org/10.3390/ma16052105DOI Listing

Publication Analysis

Top Keywords

gas separation
16
gas
9
pvdf-hfp nafion
8
hydrogen/methane gas
8
gas mixture
8
separation
6
hybrid fluoro-based
4
fluoro-based polymers/graphite
4
polymers/graphite foil
4
foil h/natural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!