The three-dimensional (3D) printing of hydrogel is an issue of interest in various applications to build optimized 3D structured devices beyond 2D-shaped conventional structures such as film or mesh. The materials design for the hydrogel, as well as the resulting rheological properties, largely affect its applicability in extrusion-based 3D printing. Here, we prepared a new poly(acrylic acid)-based self-healing hydrogel by controlling the hydrogel design factors based on a defined material design window in terms of rheological properties for application in extrusion-based 3D printing. The hydrogel is designed with a poly(acrylic acid) main chain with a 1.0 mol% covalent crosslinker and 2.0 mol% dynamic crosslinker, and is successfully prepared based on radical polymerization utilizing ammonium persulfate as a thermal initiator. With the prepared poly(acrylic acid)-based hydrogel, self-healing characteristics, rheological characteristics, and 3D printing applicability are deeply investigated. The hydrogel spontaneously heals mechanical damage within 30 min and exhibits appropriate rheological characteristics, including G'~1075 Pa and tan δ~0.12, for extrusion-based 3D printing. Upon application in 3D printing, various 3D structures of hydrogel were successfully fabricated without showing structural deformation during the 3D printing process. Furthermore, the 3D-printed hydrogel structures exhibited excellent dimensional accuracy of the printed shape compared to the designed 3D structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004586PMC
http://dx.doi.org/10.3390/ma16052085DOI Listing

Publication Analysis

Top Keywords

extrusion-based printing
16
polyacrylic acid-based
12
hydrogel
10
acid-based self-healing
8
self-healing hydrogel
8
printing
8
printing hydrogel
8
rheological properties
8
prepared polyacrylic
8
rheological characteristics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!