In this study, NiCoCrAlTiMoWNbTa high entropy alloy (HEA) was prepared using mechanical alloying (MA) and spark plasma sintering (SPS) based on the unique design concept of HEAs and third-generation powder superalloys. The HEA phase formation rules of the alloy system were predicted but need to be verified empirically. The microstructure and phase structure of the HEA powder were investigated at different milling times and speeds, with different process control agents, and with an HEA block sintered at different temperatures. The milling time and speed do not affect the alloying process of the powder and increasing the milling speed reduces the powder particle size. After 50 h of milling with ethanol as PCA, the powder has a dual-phase FCC+BCC structure, and stearic acid as PCA inhibits the powder alloying. When the SPS temperature reaches 950 °C, the HEA transitions from a dual-phase to a single FCC phase structure and, with increasing temperature, the mechanical properties of the alloy gradually improve. When the temperature reaches 1150 °C, the HEA has a density of 7.92 g cm, a relative density of 98.7%, and a hardness of 1050 HV. The fracture mechanism is one with a typical cleavage, a brittle fracture with a maximum compressive strength of 2363 MPa and no yield point.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003886 | PMC |
http://dx.doi.org/10.3390/ma16052082 | DOI Listing |
PLoS One
January 2025
Department of Artificial Intelligence and Data Science, Sejong University, South Korea.
The adoption of Financial Technology (FinTech), along with the enhancement of Human Resource (HR) competencies, service innovation, and firm growth, plays a crucial role in the development of the banking sector. Despite their importance, obtaining reliable results is often challenging due to the complex, high-dimensional correlations among various features that affect the industry. To address this issue, this research introduces a hybrid Multi-Criteria Decision-Making (MCDM) model that integrates the Entropy-Weighted Method (EWM) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS).
View Article and Find Full Text PDFSmall
January 2025
Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China.
Exploring highlyefficient electrocatalysts for overall water splitting is a challenging butnecessary task for development of green and renewable energy. Herein, PtIrFeCoNi high-entropy alloy nanoflowers (HEA NFs) withstrong 3d-5d orbital hybridization were fabricated to achieve highly efficientoverall water splitting at high current density. The PtIrFeCoNi HEA NFs achieved a 57.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
An entropy-driven catalysis (EDC) strategy is appealing for amplified bioimaging of microRNAs in living cells; yet, complex operation procedures, lacking of cell selectivity, and insufficient accuracy hamper its further applications. Here, we introduce an ingenious all-in-one entropy-driven DNA nanomachine (termed as AIO-EDN), which can be triggered by endogenous apurinic/apyrimidinic endonuclease 1 (APE1) to achieve tumor cell-selective dual-mode imaging of microRNA. Compared with the traditional EDC strategy, the integrated design of AIO-EDN achieves autocatalytic signal amplification without extra fuel strands.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, 130022, Changchun, China.
Correlating the bond strength with the macro strength of metals is crucial for understanding mechanical properties and designing multi-principal-element alloys (MPEAs). Motivated by the role of grain boundaries in the strength of metals, we introduce a predictive model to determine the grain-boundary energies and strength of metals from the cohesive energy and atomic radius. This scheme originates from the d-band characteristics and broken-bond spirit of tight-binding models, and demonstrates that the repulsive/attractive effects play different roles in the variation of bond strength for different metals.
View Article and Find Full Text PDFPLoS One
January 2025
Business School, Hanyang University, Seoul, Korea.
China's island tourism is still in the exploratory stage, and the carbon emissions due to island tourism development are still prominent. This study assesses the development of low-carbon tourism on Changdao Island in China. We constructed an evaluation model for low-carbon tourism on islands based on the driver-pressure-state-impact-response model, and the Entropy Weight Method-Analytical Hierarchy Process Method was combined with the weighting method to determine the index weights of ench evaluation-indicator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!