Urbanization processes in Asia are still ongoing; thus, aggregate demand is expected to increase in following years. Even though construction and demolition waste is a source for secondary building materials in industrialized countries, it is not yet an alternative construction material source in Vietnam as the urbanization process is still ongoing. Thus, there is a need for river sand and aggregates alternatives in concrete, namely manufactured sand (m-sand) from primary solid rock materials and secondary waste materials. The focus in the present study for Vietnam was on m-sand sand as alternative for river sand, and different ashes as alternatives for cement in concrete. The investigations comprised concrete lab tests according to the formulations of concrete strength class C 25/30 in accordance with DIN EN 206, followed by a lifecycle assessment study in order to identify the environmental impact of the alternatives. In total 84 samples were investigated, consisting of 3 reference samples, 18 samples with primary substitutes, 18 samples with secondary substitutes, and 45 samples with cement substitutes. This kind of holistic investigation approach comprising material alternatives and accompanying LCA was the first study for Vietnam, and even for Asia, and represents a substantial added value for future policy development in order to cope with resource scarcity. The results show that with the exception of metamorphic rocks, all m-sands meet the requirements for quality concrete. In terms of cement replacement, the mixes showed that a higher percentage of ash reduces the compressive strength. The compressive strength values of the mixes with up to 10% coal filter ash or rice husk ash were equivalent to the C25/30 standard concrete formulation. Higher ash contents up to 30% lead to the reduction of the concrete quality. The LCA study's results highlighted the better environmental footprints across environmental impact categories in the 10% substitution material in comparison to the use of primary materials. The LCA analysis results showed that cement as a component in concrete holds the highest footprint. The use of secondary waste as alternative for cement provides significant environmental advantage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004002PMC
http://dx.doi.org/10.3390/ma16052064DOI Listing

Publication Analysis

Top Keywords

river sand
12
concrete
9
sand aggregates
8
aggregates alternatives
8
alternatives concrete
8
secondary waste
8
study vietnam
8
environmental impact
8
substitutes samples
8
compressive strength
8

Similar Publications

Role of riverbed sand mining on planform and cross-sectional morphology of Mayurakshi River, India.

Sci Total Environ

January 2025

Laboratorio de Geografía Física, Escuela de Geografía, Universidad de Costa Rica, Costa Rica.

Human interventions in the form of riverbed sand mining are escalating worldwide, especially in the humid tropics with excess population pressure exerting an elevated demand for sand as construction materials. Naturally, channel morphological alterations are observed for the tropical fluvial systems to a large extent. The present work examines the riverbed sand mining of the Mayurakshi River (India) during the last fifty years (1970-2020) using topographical maps, satellite images and field-based cross-sectional measurements.

View Article and Find Full Text PDF

This research assesses heavy metal contamination within the riparian zone of the Danro River, a tributary of the Ganges River basin in India, particularly impacted by sand mining activities. The study conducted analyses on major and trace elements in soil samples, focusing on those identified as ecologically hazardous by the Water Framework Directive of India. Utilizing a combination of indices (Enrichment Factor, Pollution Load Index, and Index of geo-accumulation) and statistical techniques such as Principal Component Analysis (PCA), the investigation aimed to evaluate contamination severity, ecological risks, and pollution sources.

View Article and Find Full Text PDF

Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due to significant differences in the expansion coefficient, elastic modulus, and hydration heat parameters among CSGR, CVC, and GERCC. This complexity complicates quality control during construction, leading to the development of Grout-Enriched Vibrated Cemented Sand, Gravel, and Rock (GECSGR) as an alternative.

View Article and Find Full Text PDF

Environmental DNA to track endangered Gobiobotia naktongensis: Assessment of distribution and habitat requirements.

Sci Total Environ

January 2025

Restoration Research Team (Fishes/Amphibians & Reptiles), Research Center for Endangered Species, National Institute of Ecology, Yeongyang 36531, Republic of Korea. Electronic address:

Because of their noninvasive nature and high detection sensitivity, eDNA-based aquatic ecosystem surveys are useful for monitoring rare, elusive indicator species. Advancements in statistical techniques have expanded their use beyond simple population tracking to predict potential habitats based on the environmental conditions of sites detected eDNA. This study used species-specific molecular marker and targeted qPCR techniques to assess the distribution and habitat requirements of the endangered Gobiobotia naktongensis, a flagship fish species in Korean sandy river systems with increased public interest related to habitat restoration evaluations associated with dam construction.

View Article and Find Full Text PDF

Environmental determinants of intraspecific variation in five functional traits of Franch.

Front Plant Sci

December 2024

National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China.

Franch. is a native species in southwestern China, characterized by high polymorphism. However, the environmental drivers of intraspecific variation in its functional traits remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!