Nonlinear guided elastic waves have attracted extensive attention owing to their high sensitivity to microstructural changes. However, based on the widely used second harmonics, third harmonics and static components, it is still difficult to locate the micro-defects. Perhaps the nonlinear mixing of guided waves can solve these problems since their modes, frequencies and propagation direction can be flexibly selected. Note that the phenomena of phase mismatching usually occur due to the lack of precise acoustic properties for the measured samples, and they may affect the energy transmission from the fundamental waves to second-order harmonics as well as reduce the sensitivity to micro-damage. Therefore, these phenomena are systematically investigated to more accurately assessing the microstructural changes. It is theoretically, numerically, and experimentally found that the cumulative effect of difference- or sum-frequency components will be broken by the phase mismatching, accompanied by the appearance of the beat effect. Meanwhile, their spatial periodicity is inversely proportional to the wavenumber difference between fundamental waves and difference- or sum-frequency components. The sensitivity to micro-damage is compared between two typical mode triplets that approximately and exactly meet the resonance conditions, and the better one is utilized for assessing the accumulated plastic deformations in the thin plates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004116PMC
http://dx.doi.org/10.3390/ma16052039DOI Listing

Publication Analysis

Top Keywords

microstructural changes
8
phase mismatching
8
fundamental waves
8
sensitivity micro-damage
8
difference- sum-frequency
8
sum-frequency components
8
evaluation plastic
4
plastic deformation
4
deformation considering
4
considering phase-mismatching
4

Similar Publications

MoS coatings are used extensively in aerospace and defense applications due to their ultralow friction and high wear resistance. Burnished and resin-bonded MoS coatings are commonly used in these applications due to simplicity in deposition and history of use, despite issues with consistency in coating properties and performance. Physical vapor deposition (PVD) of MoS thin films has emerged as a process alternative in the past 50 years, promising far greater control over film structure and composition but at a greater cost.

View Article and Find Full Text PDF

High-resolution microCT analysis of sclerotic subchondral bone beneath bone-on-bone wear grooves in severe osteoarthritis.

Bone

January 2025

Department of Research and Development, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland. Electronic address:

Osteoarthritis (OA) is associated with sclerosis, a thickening of the subchondral bone plate, yet little is known about bone adaptations around full-thickness cartilage defects in severe knee OA, particularly beneath bone-on-bone wear grooves. This high-resolution micro-computed tomography (microCT) study aimed to quantify subchondral bone microstructure relative to cartilage defect location, distance from the joint space, and groove depth. Ten tibial plateaus with full-thickness cartilage defects were microCT-scanned to determine defect location and size.

View Article and Find Full Text PDF

Tetrafluoro(aryl)sulfanylated Bicyclopentane Crystals That Self-Destruct upon Cooling.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States.

Article Synopsis
  • Single crystals of organic compounds that respond to heat or light are well-studied, but those showing extreme mechanical response are less common in research.
  • A tetrafluoro(aryl)sulfanylated bicyclopentane developed in this study exhibited a low-temperature thermosalient effect, where crystals jumped and disintegrated at temperatures below ∼193 K.
  • Investigations using various techniques revealed that the mechanical response is not solely due to a chemical transformation or phase transition, but rather related to the release of built-up strain and possibly influenced by microstructural changes or impurities within the crystal.
View Article and Find Full Text PDF

Two-dimensional molybdenum ditelluride (2D MoTe) is an interesting material for artificial synapses due to its unique electronic properties and phase tunability in different polymorphs 2H/1T'. However, the growth of stable and large-scale 2D MoTe on a CMOS-compatible Si/SiO substrate remains challenging because of the high growth temperature and impurity-involved transfer process. We developed a large-scale MoTe film on a Si/SiO wafer by simple sputtering followed by lithium-ion intercalation and applied it to artificial synaptic devices.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on dissimilar laser welding of AISI 1060 carbon steel and Duplex Stainless Steel 2205, using both experimental and numerical methods to analyze the impact of welding parameters.
  • The increase in laser power significantly influenced the melt pool depth, which rose from 0.4 mm to 1.4 mm when power was ramped up from 250 to 450 W, and the resultant microstructure varied between the two materials with distinct solidification patterns.
  • Tensile test results indicated that the carbon steel side exhibited brittle fracture, while the Duplex Stainless Steel showed a ductile fracture, highlighting the differing mechanical properties due to their respective microstructures and the transition towards ductility with increased laser energy density.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!