Large deflection of rectangular plates under transverse pressure is described by Föppl-von Kármán equations, which have only approximated solutions. One of these methods is the separation into a small deflection plate and a thin membrane described by a simple third order polynomial expression. The present study presents an analysis to obtain analytical expressions for its coefficients by using the plate's elastic properties and dimensions. To validate the non-linear relationship between the pressure and the lateral displacement of the multiwall plate, a vacuum chamber loading test is used to measure the plate's response, with a large number of plates and length-width combinations. In addition, to further validate the analytical expressions, several finite element analyses (FEA) were performed. It has been found that the polynomial expression fairly describes the measured and calculated deflections. This method allows the prediction of plate deflections under pressure as soon as the elastic properties and the dimensions are known.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003880PMC
http://dx.doi.org/10.3390/ma16052041DOI Listing

Publication Analysis

Top Keywords

rectangular plates
8
plates transverse
8
polynomial expression
8
analytical expressions
8
elastic properties
8
properties dimensions
8
multiwall rectangular
4
transverse pressure-a
4
pressure-a non-linear
4
non-linear experimental
4

Similar Publications

Macular degeneration (MD), which affects the central visual field including the fovea, has a profound impact on acuity and oculomotor control. We used a motion extrapolation task to investigate the contribution of various factors that potentially impact motion estimation, including the transient disappearance of the target into the scotoma, increased position uncertainty associated with eccentric target positions, and increased oculomotor noise due to the use of a non-foveal locus for fixation and for eye movements. Observers performed a perceptual baseball task where they judged whether the target would intersect or miss a rectangular region (the plate).

View Article and Find Full Text PDF

The design of the flow field structure for bipolar plates significantly influences the output performance of proton exchange membrane fuel cells (PEMFCs). Adding baffles in the flow channels can enhance the transportation of reactants and electrochemical performance of the PEMFCs. In this study, three types of baffles with different shapes and sizes were designed.

View Article and Find Full Text PDF

Purpose: Pulsed electrical field (PEF) ablation is an energy-based technique used to treat a range of cancers by irreversible electroporation (IRE). Our objective was to use computational and plant-based models to characterize the electric field distribution and ablation zones induced with a commercial 8-needle array-based applicator intended for treatment of skin cancer when high-frequency IRE (H-FIRE) pulses are applied. Electric field characterisation of this device was not previously assessed.

View Article and Find Full Text PDF

The mechanical properties of an engineering structure can be substantially influenced by a random impact force (RIF), which may compromise the integrity and safety of the structure. Nevertheless, accurately localising the RIF applied to a structure presents a significant challenge. To address this issue, this study introduces a novel method known as the weighted reference database method (WRDM).

View Article and Find Full Text PDF

Underground coal excavation has caused a series of geological disasters and environmental problems, especially coal mining subsidence. Backfill-strip mining, which combines the advantages of strip mining and backfill mining, can reduce subsidence and improve the recovery rate of coal. Therefore, predicting the impact of backfill-strip mining on the surface environment and strata structure is essential for the better development of backfill-strip mining technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!