Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The clarity of the beer is essential to its marketability and good consumer approval. Moreover, the beer filtration aims to remove the unwanted constituents that cause beer haze formation. Natural zeolite, an inexpensive and widespread material, was tested as a substitute filter media for diatomaceous earth in removing the haze constituents in beer. The zeolitic tuff samples were collected from two quarries in Northern Romania: Chilioara, in which the zeolitic tuff has a clinoptilolite content of about 65%, and the Valea Pomilor quarry, containing zeolitic tuff with a clinoptilolite content of about 40%. Two-grain sizes, <40 and <100 µm, from each quarry were prepared and thermally treated at 450 °C in order to improve their adsorption properties and remove organic compounds and for physico-chemical characterization. The prepared zeolites were used for beer filtration in different mixtures with commercial filter aids (DIF BO and CBL3) in laboratory-scale experiments, and the filtered beer was characterized in terms of pH, turbidity, color, taste, flavor, and concentrations of the major and trace elements. The results showed that the taste, flavor, and pH of the filtered beer were generally not affected by filtration, while turbidity and color decreased with an increase in the zeolite content used in the filtration. The concentrations of Na and Mg in the beer were not significantly altered by filtration; Ca and K slowly increased, while Cd and Co were below the limits of quantification. Our results show that natural zeolites are promising aids for beer filtration and can be readily substituted for diatomaceous earth without significant changes in brewery industry process equipment and protocols for preparation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004079 | PMC |
http://dx.doi.org/10.3390/ma16051914 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!