DIC-Enhanced Identification of Bodner-Partom Model Parameters for Bitumen Binder.

Materials (Basel)

Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland.

Published: February 2023

Bitumen binder is a component of asphalt mixtures that are commonly used as the materials constituting the upper layers of a pavement's structure. Its main role is to cover all the remaining constituents (aggregate, filler and other possible additives) and create a stable matrix, in which they are embedded due to the adhesion forces. The long-term performance of bitumen binder is crucial to the holistic behavior of the layer made of the asphalt mixture. In this study, we use the respective methodology to identify the parameters of the well-established Bodner-Partom material model. For the purposes of its parameters identification, we carry out a number of the uniaxial tensile tests with different strain rates. The whole process is enhanced with a digital image correlation (DIC) to capture the material response in a reliable way and to provide deeper insight into the experiment results. The obtained model parameters were used to compute numerically the material response using the Bodner-Partom model. Good agreement between the experimental and numerical results was observed. The maximum error for the elongation rates equal to 6 mm/min and 50 mm/min is of order of 10%. The novel aspects of this paper are as follows: the application of the Bodner-Partom model to the bitumen binder analysis and the DIC-enhancement of the laboratory experiment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003832PMC
http://dx.doi.org/10.3390/ma16051856DOI Listing

Publication Analysis

Top Keywords

bitumen binder
16
bodner-partom model
12
model parameters
8
material response
8
model
5
dic-enhanced identification
4
bodner-partom
4
identification bodner-partom
4
parameters
4
bitumen
4

Similar Publications

Comprehensive Performance Evaluation of Epoxy Reclaimed Asphalt and Mixtures.

Materials (Basel)

February 2025

Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa, Italy.

In order to improve the reclaimed asphalt pavement (RAP) dosing and the road performance of recycled asphalt mixtures, this study prepared epoxy recycled binder (ERB) and epoxy recycled mixtures (ERMs) by dosing epoxy asphalt, respectively. The rheological characteristics and microstructure of ERB were comprehensively analyzed using a dynamic shear rheometer (DSR), a bending beam rheometer (BBR), and fluorescence microscopy (FM). The road performance of ERM was evaluated by a four-point bending test, a rutting test, trabecular beam bending test, a freeze-thaw splitting test, an immersion Marshall test, and a uniaxial compression dynamic modulus test.

View Article and Find Full Text PDF

To investigate the adhesion properties of asphalt binder-aggregate interfaces, contact angle tests were performed on base, aged, and SBS# asphalt with limestone and basalt aggregates. A molecular dynamics simulation model was established to analyze interfacial adhesion characteristics. The results indicate good consistency between the experimental and molecular dynamics simulation findings.

View Article and Find Full Text PDF

Asphalt with different aging degrees requires different rejuvenation methods. However, current applications of hot in-place recycling (HIR) for Reclaimed Asphalt Pavement (RAP) do not consider the differences in the aging degree of asphalt binder across different layers of RAP. Additionally, there is limited understanding of the changes in asphalt binder and aggregate properties during the HIR process.

View Article and Find Full Text PDF

The semi-circular bending method (SCB) is a useful test for evaluating the cracking resistance of asphalt mixtures with added reclaimed asphalt shingles. A mixture of the asphalt concrete AC 16 with 50/70 paving bitumen was used for the binder course test as a reference mix. The purpose of the paper is to evaluate two aging conditions (short-term and long-term) of the above-mentioned asphalt mixtures in relation to their fracture properties.

View Article and Find Full Text PDF

The viscoelastic behavior of asphalt mixtures is a crucial consideration in the analysis of pavement mechanical responses and structural design. This study aims to elucidate the molecular structure and component evolution trends of polyphosphoric acid (PPA)/styrene butadiene styrene block copolymer (SBS)/styrene butadiene rubber copolymer (SBR) composite modified asphalt (CMA) under rolling thin film oven test (RTFOT) and pressure aging (PAV) conditions, as well as to analyze the viscoelastic evolution of CMA mixtures. First, accelerated aging was conducted in the laboratory through RTFOT, along with PAV tests for 20 h and 40 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!