Thermally Mendable Self-Healing Epoxy Coating for Corrosion Protection in Marine Environments.

Materials (Basel)

Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, P.le Enrico Fermi 1, 80055 Portici, Italy.

Published: February 2023

Polymeric coatings represent a well-established protection system that provides a barrier between a metallic substrate and the environment. The development of a smart organic coating for the protection of metallic structures in marine and offshore applications is a challenge. In the present study, we investigated the use of self-healing epoxy as an organic coating suitable for metallic substrates. The self-healing epoxy was obtained by mixing Diels-Alder (D-A) adducts with a commercial diglycidyl ether of bisphenol-A (DGEBA) monomer. The resin recovery feature was assessed through morphological observation, spectroscopic analysis, and mechanical and nanoindentation tests. Barrier properties and anti-corrosion performance were evaluated through electrochemical impedance spectroscopy (EIS). The film on a metallic substrate was scratched and subsequently repaired using proper thermal treatment. The morphological and structural analysis confirmed that the coating restored its pristine properties. In the EIS analysis, the repaired coating exhibited diffusive properties similar to the pristine material, with a diffusivity coefficient of 1.6 × 10 cm/s (undamaged system 3.1 × 10 cm/s), confirming the restoration of the polymeric structure. These results reveal that a good morphological and mechanical recovery was achieved, suggesting very promising applications in the field of corrosion-resistant protective coatings and adhesives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004549PMC
http://dx.doi.org/10.3390/ma16051775DOI Listing

Publication Analysis

Top Keywords

self-healing epoxy
12
metallic substrate
8
organic coating
8
coating
5
thermally mendable
4
mendable self-healing
4
epoxy coating
4
coating corrosion
4
corrosion protection
4
protection marine
4

Similar Publications

Concrete, as the most widely used construction material globally, is prone to cracking under the influence of external factors such as mechanical loads, temperature fluctuations, chemical corrosion, and freeze-thaw cycles. Traditional concrete crack repair methods, such as epoxy resins and polymer mortars, often suffer from a limited permeability, poor compatibility with substrates, and insufficient long-term durability. Microbial biogrouting technology, leveraging microbial-induced calcium carbonate precipitation (MICP), has emerged as a promising alternative for crack sealing.

View Article and Find Full Text PDF

A self-healing superhydrophobic coating was successfully prepared in the present work. The coating comprised PEG (polyethylene glycol) and FeO nanoparticles modified with stearic acid (SA) via hydrogen bonds, using polyamide resin and epoxy as binders. The chemically damaged surface could restore its original superhydrophobic structure and chemical composition after 4 h at room temperature or 10 min of heating in an oven with a self-healing efficiency of 95.

View Article and Find Full Text PDF

This study presents the design and experimental evaluation of advanced corrosion protection coatings for application on prestressing strands which are the core constituents of prestressed concrete structures such as bridges. Variety of self-heal coatings embodying corrective and protective phenomena in response to the degrading effects of corrosion have been designed and tested in simulated aggressive weathering conditions. Standard 7-wire prestressing strands coated with self-heal epoxy, self-heal toughened epoxy and hybrid epoxy coating systems were subjected to salt fog spray up to a duration of 2500 h, and 3M CalCl, 3M NaOH, saturated Ca(OH) solutions and distilled water up to 45 days duration.

View Article and Find Full Text PDF

The aim of this research is to explore the effectiveness of epoxy-resin@polypyrole composites as a corrosion inhibitor when applied as a coating on carbon steel 1018 in a 3.5 wt % sodium chloride electrolyte solution. The anticorrosion properties of these composite coatings can be optimized by manipulating their morphology.

View Article and Find Full Text PDF

Self-Healing of Microcracks and Scratches in a Carbon-Fiber Reinforced Epoxy Vitrimer by Conventional or Remote Heating.

ACS Appl Mater Interfaces

December 2024

Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CONICET/UNMdP, Av. Colón 10850, B7606BWV, Mar del Plata, Argentina.

This study addresses the extension of the service life of carbon-fiber reinforced epoxies by inducing thermal healing of microcracks through the use of a vitrimer as a polymeric matrix. Our aim was to explore the feasibility of using a blend of selected carboxylic acids (citric, glutaric, and sebacic acids) and commercial monomers to design a matrix specifically developed for technological implementation in composites with the ability of intrinsic repair of microcracks under moderate (even remote) heating treatments. The selection of the formulation (the acid blend, catalysts, and monomers) was the result of an exhaustive prescreening analysis of processing requisites and final properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!